Организация пространства. Советы и идеи. Сад и участок

Есть ли цитоскелет у прокариот. Актиновые филаменты и актиновый цитоскелет клетки

Раздел посвщённый изучению скелета клетки - цитоскелету

Микротрубочки

Параметры микротрубочек

Время полужизни микротрубочки ~5 мин, во время первой половины митоза ~15c
Диаметр микротрубочки 25нм.

Образование микротрубочек

Структурной единицей микротрубочки является гетеродимер белка тубулина , состоящий из α- и β-субъединиц (53 и 55 кДа), не прибывающих по отдельности, схожие но не идентичные. Каждая из субъединиц имеет сайт для связывания нуклеотида. α-тубулин связывает молекулу GTP, которая не гидролизуется, β-тубулин может связывать GDP или GTP (рис.1). β-тубулин одного гетеродимера связывает GTP и соединяется с α-тубулином другого гетеродимера, при этом GTP гидролизуется до GDP. α-тубулин является GTP-активирующим белком и катализирует гидролиз GTP β-тубулина (рис.2). Таким образом гетеродимеры образуют линейные цепочки – протофиламенты, 13 протофиламентов образуют спиральный циклический комплекс, такие кольца полимеризуются в трубку (рис.3). Фосфорилирование тубулина усиливает полимеризацию.

Рис.1 Гетеродимер тубулина. α-тубулин (син.) с сайтом связывания GTP (голуб.). β-тубулин (зел.) с сайтами связывания GTP и GDP (красн.)
Микротрубочки - динамические полярные стр-ры. (+)-конец динамически нестабильный (β-тубулин) и (-)-конец стабилизируется, связываясь с центром организации микротрубочек (см. обзор Центросома).
Тредмиллинг - движение микротрубочек в результате одновременного наращивания одного конца и диссоциации другого конца микротрубочек.
ДНК тубулина в нуклеотид-связывающем домене имеет высококонсервативную последовательность GGGTG(T/S)G.
Бактериальный белок FtsZ - гомолог тубулина является компонентом бактериального цитоскелета и полимеризуется с образованием микротрубочек.

Микротрубочки

рис.2 Микротрубочки способны образовывать синглет, дублет и триплет.
A микротрубочка дублета или триплета состоит из 13 протофиламентов.
Трубочки B и C состоят из меньшего числа протофиламентов, обычно 10.

Белки соединяющиеся с микротрубочками.

С микротрубочками ассоциируют два вида белков: структурныерные
белки (MAP-microtubuls-associated proteins) и белки транслокаторы.

Присоединение MAP регулируется фосфорилированием, в результате
которого некоторые MAP отсоединяются от микротрубочек.

+TIPS - белки взаимодействующие с (+)-концом
микротрубочки, многие из которых являются моторными белками,
другие обеспечивают взавимодействие с микрофиламентами в
клеточном кортексе, присоединяя микротрубочки к плазматической
мембране. Некоторые +TIPS регулируют динамику микротрубочек
и стабильность (+)-конца, например, XMAP215
семейство белков стабилизирует (+)-конец предотвращая разрушение
и обеспечивая рост микротрубочек.

CLASP - белки обеспечивающие присоединение
димеров тубулина к (+)-концу и ингибируют катастрофины .
Они взаимодействуют с кинетохором - комплексом который соединяет
(+)-конец микротрубочки с хромосомой.

Катастрофины - +TIP белки связывающиеся с (+)-концом микротрубочек
и обепечивающие диссоциацию димеров тубулина. Они способны
активировать гидролиз GTP или изменение конформации протофиломентов
(MCAK - кинезин, располагающийся в кинетохоре
и обеспечивает диссоциацию (+)-конца во время анафазы митоза).

Стасмин - дестабилизирующий белок, находящийся
в раковых клетках. Присоединяется с тубулиновым гетеродимером
затрудняя их полимеризацию. Стасмины ингибируются фосфорилированием.

Катанин - разделяет микротрубочки образуя новый нестабильный
(+)-конец.

НекоторыеMAP соединяют микротрубочки
друг с другом, с мембраной или промежуточными филаментами.

Тип I MAP обнаружен в аксонах и дендритах нервных клеток
и некоторых других имеет несколько повторов KKEX (Lys-Lys-Glu-X)
которые связывают (-)-заряженные участки тубулина.

Тип II MAP также обнаружен в аксонах и дендритах нервных
клеток и некоторых других. Они имеют 3-4 повтора из 18 остатков
последовательности, которая присоединяет тубулин.

Белки взаимодействующие с (+)-концом микротрубочек

APC, Kar9 (Sc )*

APC (adenomatous polyposis coli) - опухолевый супрессор,
являющийся основой для белкового комплекса регулирующего
фосфорилирование b-катенинов.

EB1, Bim1 (Sc), Mal3 (Sp)

EB1 (end-binding protein 1) - белок взаимодействующий с
APC.

Nud (An)

Nud (nuclear distribution) - белок регулирующий динеины.

Lis1/NUDF (An), Pac1 (Sc )

Lis (lissencephaly) - нарушение развития человеческого мозга
(гладкий мозг). Белок взаимодействует с динеином регулируя
его функцию.

NUDE (An), R011 (Neurospora
crassa)/Ndl1 (Sc); Nde1, Ndel1
(млекопитающие).

Эти белки взаимодействуют с Lis1 и денеинами и обеспечивают
их функционирование.

Kar3 (Sc)

Kar3 - кинезин, имеющий C-концевой моторный домен и пренадлежит
к семейству Kinesin-14.

Kip2 (Sc ), Tea2
(Sp ), KipA (An )

Кинезины грибов принадлежащие семейству Kinesin-7 включающее
CENP-E - центромерный белок млекопитающих, Kip2 , Tea2 and
KipA

Klp10A (Dm), Klp59C, MCAK

Члены семейства Kinesin-13. Klp10A - предполагаемый гомолог
Kif2A млекопитающих. Klp59C (Dm) - предпоплагаемый гомолог
MCAK млекопитающих. KLP10A и другие члены Kin I
субсемейства кинезинов взаимодействующих с некепированным
(-)-концом микротрубочек веретена деления во время митоза.
Они обеспечивают диссоциацию тубулиновых димеров полюсов
клетки, способствуя тедмиллингу (движению
микротрубочек к полюсам и укорочение микротрубочек во время
анафазы митоза).

Dynactin

Комплекс белков включающий белок p150glued. Динактин связывает
динеин и регулирует его свойства, а такжи присоединяет везикулы
к динеину. p150glued - гомолог NUDMA. nidulans.

CLIP-170, Bik1 (Sc ), Tip
(Sp )

CLIP-170 обеспечивает стабилизацию и рост микротрубочек,
а так же регулирует локализацию динеина.

СLIP-170 - обеспечивает посадку комплекса динеин-динактин,
участвующего в транспорте везикул, на конец микротрубочки.
LIP-170 находится в цитоплазме в неактивной конформации
в которой N-конец связывающийся с микротрубочкой связан
с С-концом той же молекулы. При связывании N-конца с тубулином
или (+)-концом микротрубочки, C-конец освобождается и связывается
с комплексом динеин-динактин через молекулу p150Glued, микротрубочка
стабилизируется. Диненин-динактин освобождается и начинает
движение вдоль микротрубочки (рис.3)

Некоторые токсины и лекарства, некоторые из которых нарушают митоз влияют на полимеризацию и деполимеризацию тубулина:
таксол - противоопухолевое лекарство, стабилизирует микротрубочки.
колхицин связывает тубулин блокируя полимеризацию. Микротрубочки деполимеризуются при высокой концентрации колхицина.
винбластин - усиливает деполимеризацию образуя паракристаллы винбластин-тубулин.
нокодазол - обеспечивает деполимеризацию микротрубочек.
Ассоциация подавляется винбластин, винкристин, колхицин, усиливается – таксол.
Гамма-сома – центр организующий микротрубочки на внешней поверхности ядра.

Микрофиламенты

Мономер G-актин (глобулярный актин)- ассиметричный
(42кДа) состоит из двух доменов, по мере повышения ионной
силы агрегирует в скрученный в спираль полимер F-актин (фибриллярный
актин).

G-актин имеет участки связывания двухвалентных катионов
и нуклеотидов в физиологических условиях занятые Mg 2+
и ATP.

Полимеризация G-актина в F-актин

F-актин обладает полярностью (+) и (-) имеющих
различные свойства.

Молекула G-актина несет прочно связанную АТФ, который при
переходе в F-актин медленно гидролизуется до АДФ – проявляет
свойства АТФ-азы Полимеризация сопровождается гидролизом
АТФ, что не необходимо т.к. полимеризация идет и в присутствии
негидролизуемых аналогов АТФ

Полимеризация состоит из нескольких процессов: нуклеация ,
элонгация , диссоциация ,
фрагментация , стыковка .
Эти процессы протекают одновременно.

Нуклеация – соединение трех G-актинов –
инициация полимеризации.

Элонгация - наращивание цепи актина путем
присоединения G-актина к (+)-концу F-актина.

Диссоциация - укорачивание цепи. Деполимеризация
актина имеет одинаковую скорость с обоих концов

Фрагментация - в результате теплового движения
F-актин может фрагментироваться.

Стыковка - отдельные фрагменты могут соединяться
друг с другом конец в конец.

При конценрации G>F – одновременно происходит полимеризация
(+) и (–) конца.

Если G (–)-конца – тредмиллинг – движение F-актина
за счет одновременного наращивания (+)-конца и диссоциации
(-)-конца. При G ~ F – динамическое равновесие - происходит
полимеризация (+) и деполимеризация (–)-конца с затратой
энергии ATP G-актин связ с ATP и полимеризуясь гидролизует
ATP.при критических конц G-актина (+) конец удлиняется,
а (-) – укорачивается

Актиновые микрофиламенты

F-актин – фибриллярный, длина оборота спирали 37
нм, d=6-8нм.

Актинсвязывающие белки

Более 50 белков в цитоплазме связываются с актином выполняя
различные функции: регулируют объем G-актинового пула (профилин),
влияют на скорость полимеризации (виллин), стабилизируют
концы нитей (фрагин, а-актинин), сшивают филаменты др с
др или с др компонентами (виллин, α-актин, спектрин,
MARCKS, фимбрин), разрушают двойную спираль F-актина (гельзолин).
Активность этих белков регулируется Ca 2+ и протеинкиназами.

Имеется пять мест действия белков: с мономером
актина, с (+)-концом (оперенный), с (-)-концом (заостренный),
с боковой поверхностью. Актин-связывающие белки могут быть
чувствительны или нечувствительны к Ca 2+

1. Белки связывающиеся c мономером актина - подавляют нуклеацию
(профилин, фрагментин - чувствительны к Ca 2+).
Профилин с мономером способны надстраивать F-актин, а фрагментин
нет, блокируя и нуклеацию и элонгацию. Не чувствительные
к Ca 2+ ДНКазаI и белок связывающийся с витамином
D - функционируют вне клетки.

2. Кепирующие(+)-конец может быть блокирован кепирующими
белками - блокирование элонгации и стыковки, способствуют
нуклеации - появление укороченных филаментов (гельзолин,
виллин, фрагмин)

3. (-)-конец - инициирование нуклеации, подавление стыковки
и элонгации - увеличение числа и уменьшение длины фрагментов.
Акументин в макрофагах, бревин - сывороточный белок вызывает
быстрое снижение вязкости раствора F-актина. Оба белка не
чувствительны к Ca 2+

4. Не сшивающие - боковое связывание может как стабилизировать
так и дестабилизировать F-актин Тропомиозин (Ca-независим)
стабилизирует, северин, виллин (Ca-зависим) - связываясь
с F-актином разрезают его.

5. Сшивающие F-актин между собой с образованием геля. Такие
белки индуцируют нуклеацию. Такие белки димерны или имеют
два актин-связывающих домена. α-актин тромбоцитов,
виллин, фимбрин, актиногелин из макрофагов (Ca-независим).

кэпирующие белки - закрывают концы актиновых
филаментов, предотвращая полимеризацию-деполимеризацию,
способствуют прикреплению филамента к мембране.

фаллоидин – яд бледной поганки, связывается
с (-)-концом и ингибирует деполяризацию.

цитохалазин – токсин плесневых грибов присоединяется
к (+) концу, блокируя полимеризацию.

кэпирующие-фрагментирующие белки - фрагментируют
F-актин, вызывая переход геля в золь (гельзолин 90kD активируясь
Ca2+ 10-6M разрывает F-актин и связывается с его концами).

белки связывающие F-актин

белок M, kD рис. локализация и действие на F-актин
фасцин 55 филлоподии, ламелоподии, стресс-фибриллы, микроворсинки,
акросома
тропомиозин 2x35 стабилизирует F-актин, предотвращая фрагментацию
миозин 2x260 скольжение нитей
минимиозин 150 движение пузырьков
профилин 15 запасение G-актина
скруин 102 акросома
вилин 92 микроворсинки
дематин 48 кортикальная сеть эритроцитов
фимбрин 68 адгезион. контакты, микроворсинки связ в пучки
актинин 2x102 адгез контакты, микроворсинки связ в пучки
спектрин 2x265+2x260 кортик сеть эритроц прикрепление к ПМ
дистрофин 427 корт.сеть мыш волокон
ABP120 92 псевдоподии
филамин 2x280 псевдоподии, стрессфибриллы сшивает в сети

Структуры образуемые актином

Клеточный кортекс – сеть из актиновых филаментов
под плазматической мембраной.

Филлоподии

Стресс-фибриллы - образуются, когда у клетки есть
возможность прикрепиться к субстрату

Промежуточные филаменты

ПРОМЕЖУТОЧНЫЕ ФИЛАМЕНТЫ
белки промеж филаментов клетки число M, kD тип
кислые кератины эпит >15 40-57 I
основные кератины эпит >15 53-67 II
десмин мыш 1 53 III
кислый фибриллярный белок глиальн, астроциты 1 50
виментин мезенх, нек эпит 1 57
периферин нервные 1 57
белки нейрофиламентов: аксоны и дендриты IV
NF-L 1 62
NF-M 1 102
NF-H 1 110
интернексин ЦНС 1 66
нестин эпит нервн ткани 1 240
ламин A ядра всех клеток 1 70 V
ламин B 1 67
ламин С 1 67
септамерный мономер?параллельный димер?антипараллельный тетрамер?протофиламент? протофибрилла?ПФ
промежуточные филаменты
d=10нм, (цитокератины, десмин, виментин, кислый фибриллярный глиапротеин (GFAP), нейрофиламент) состоят из базовой стержневой стр-ры – суперспирализованная -спираль, такие димеры ассоциируют антипараллельно, образуя тетрамер, агрегация тетрамеров «голова к голове» дает протофиламент, 8 протофиламентов образ. промежуточное волокно | полимеризация ведет к образ. устойчивых неполярных полимерных молекул

белки связанные с ПФ
белок M, kD локализация
BPAG1 230 полудесмосомы
плакоглобин 3 десмосомы
десмоплакинI 250 десм
десмоплакинII 215 десм
плектин 300 кортек. зона
анкирин 140 кортек. зона
филаггрин 30 цитозоль
рецептор B-ламина 58 ядро
У мутантов мышей отсутствует виментин, мыши при этом живут совершенно нормально.
В растительных клетках цитоскелет представлен микротрубочками и микрофиламентами, промежуточных филаментов нет, но есть ламины

Реснички

Ресничка - вырост цитоплазмы h=300нм, покрытый пм
аксонема – d=200нм, 9 дублетов микротрубочек, 100, 2 центральные микротрубочки, А-микротрубочка - 13 субъединиц, В-микротрубочка – 11 субъединиц,
базальное тельце - погружено в цитоплазму d = 200 нм, 9 триплетов микротрубочек, имеет ручки, втулку и спицы в проксимальной части.
Скорость движения клеток за счет ресничек может достигать ~5мм/c. Число ресничек в кл трахеи ~300, в клетке инфузории ~14тыс.
кинетоцилии – способные к движению (эпителии, спермии), первичные реснички – не двигаются.



План:

    Введение
  • 1 Цитоскелет эукариот
    • 1.1 Актиновые филаменты (микрофиламенты)
    • 1.2 Промежуточные филаменты
    • 1.3 Микротрубочки
  • 2 Цитоскелет прокариот
    • 2.1 Бактериальные гомологи актина
      • 2.1.1 MreB и его гомологи
      • 2.1.2 ParM
      • 2.1.3 MamK
    • 2.2 Гомологи тубулина
      • 2.2.1 FtsZ
      • 2.2.2 BtubA/B
    • 2.3 Кресцентин, гомолог белков промежуточных филаментов
    • 2.4 MinD и ParA
  • Примечания

Введение

Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зелёный, ядра клеток - в голубой цвет.

Цитоскеле́т - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.

Кератиновые промежуточные филаменты в клетке.

Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).


1. Цитоскелет эукариот

Клетки эукариот содержат три типа так называемых филаментов. Это супрамолекулярные, протяжённые структуры, состоящие из белков одного типа, сходные с полимерами. Разница заключается в том, что в полимерах связь между мономерами ковалентная, а в филаментах связь составных единиц обеспечивается за счёт слабого нековалентного взаимодействия.

1.1. Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином - в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.


1.2. Промежуточные филаменты

Диаметр промежуточных филаментов составляет от 8 до 11 нанометров. Они состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета.

Схема, показывающая цитоплазму, вместе с её компонентами (или органеллами ), в типичной животной клетке. Органеллы:
(1) Ядрышко
(2) Ядро
(3) рибосома (маленькие точки)
(4) Везикула
(5) шероховатый эндоплазматический ретикулум (ER)
(6) Аппарат Гольджи
(7) Цитоскелет
(8) Гладкий эндоплазматический ретикулум
(9) Митохондрия
(10) Вакуоль
(11) Цитоплазма
(12) Лизосома
(13) Центриоль и Центросома


1.3. Микротрубочки

Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц - альфа- и бета- формы тубулина. Микротрубочки - крайне динамичные структуры, потребляющие ГТФ в процессе полимеризации. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы - кинезин и динеин), образуют основу аксонемы ундилиподий и веретено деления при митозе и мейозе.


2. Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты. Однако с выходом в 2001 году статьи Jones и соавт. (PMID: 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина, актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.


2.1. Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

2.1.1. MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.


2.1.2. ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

2.1.3. MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

2.2. Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

2.2.1. FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения.

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы).

2.2.2. BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter . Они более близки к тубулину по своему строению, чем FtsZ.

2.3. Кресцентин, гомолог белков промежуточных филаментов

Белок был найден в клетках Caulobacter crescentus . Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин − и MreB − , имеют сферическую форму.

2.4. MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

Примечания

  1. Shih Y.-L., Rothfield L. The Bacterial Cytoskeleton. // Microbiology And Molecular Biology Reviews. - 2006. - V. 70., No. 3 - pp. 729-754. PMID: 16959967 - www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16959967

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина , закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином - в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт .

Промежуточные филаменты

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты . Однако с выходом в 2001 году статьи Jones и соавт. (), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина , актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения .

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы) .

BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter . Они более близки к тубулину по своему строению, чем FtsZ.

Кресцентин, гомолог белков промежуточных филаментов

Белок был найден в клетках Caulobacter crescentus . Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин − и MreB − , имеют сферическую форму.

MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

См. также

Напишите отзыв о статье "Цитоскелет"

Примечания

[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]

Отрывок, характеризующий Цитоскелет

Иногда, по неизвестным нам причинам, какой-то человек или факт оставляет в нашей памяти неизгладимое впечатление и буквально «впечатывается» в неё навсегда, а иногда даже что-то очень важное просто исчезает в «вечнотекущем» потоке времени, и только случайный разговор с каким-то старым знакомым неожиданно «выхватывает» из закоулков нашей памяти какое-то исключительно важное событие и несказанно удивляет нас тем, что мы вообще могли такое как-то забыть!..
Перед тем, как я решилась написать эту книгу, я попыталась восстановить в своей памяти некоторые для меня важные события, которые я считала достаточно интересными, чтобы о них рассказать, но, к моему большому сожалению, даже обладая великолепной памятью, я поняла, что не смогу достаточно точно восстановить многие детали и особенно диалоги, которые происходили так давно.
Поэтому я решила воспользоваться самым надёжным и хорошо проверенным способом – перемещением во времени – для восстановления любых событий и их деталей с абсолютной точностью, проживая заново именно тот день (или дни), когда выбранное мною событие должно было происходить. Это было единственным верным для меня способом достичь желаемого результата, так как обычным «нормальным» способом и вправду абсолютно невозможно воспроизвести давно прошедшие события с такой точностью.
Я прекрасно понимала, что такая детальная точность до мельчайших подробностей воспроизведённых мною диалогов, персонажей и давно происходивших событий, может вызвать недоумение, а может даже и некоторую настороженность моих уважаемых читателей (а моим «недоброжелателям», если такие вдруг появятся, дать возможность назвать всё это просто «фантазией»), поэтому сочла своим долгом попытаться всё происходящее как-то здесь объяснить.
И даже если это мне не совсем удалось, то просто пригласить желающих приоткрыть со мной на какое-то мгновение «завесу времени» и прожить вместе мою странную и временами даже чуть-чуть «сумасшедшую», но зато очень необычную и красочную жизнь...

После стольких прошедших лет, для всех нас детство становится больше похожим на давно слышанную добрую и красивую сказку. Вспоминаются тёплые мамины руки, заботливо укрывающие перед сном, длинные солнечные летние дни, пока ещё не затуманенные печалями и многое, многое другое – светлое и безоблачное, как само наше далёкое детство… Я родилась в Литве, в маленьком и удивительно зелёном городке Алитус, далеко от бурной жизни знаменитых людей и «великих держав». В нём жило в то время всего около 35,000 человек, чаще всего в своих собственных домах и домиках, окружённых садами и цветниками. Весь городок окружал древний многокилометровый лес, создавая впечатление огромной зелёной чаши, в которой тихо мирно ютился, живя своей спокойной жизнью, княжеский городок.

Он строился в 1400 году литовским князем Алитис на берегу широкой красавицы реки Нямунас. Вернее, строился замок, а вокруг уже позже обстраивался городок. Вокруг городка, как бы создавая своеобразную защиту, река делала петлю, а в середине этой петли голубыми зеркалами сияли три небольших лесных озера. От старинного замка до наших дней, к сожалению, дожили только лишь руины, превратившиеся в огромный холм, с вершины которого открывается изумительный вид на реку. Эти руины были любимым и самым загадочным местом наших детских игр. Для нас это было местом духов и привидений, которые казалось всё ещё жили в этих старых полуразрушенных подземных тоннелях и искали своих «жертв», чтобы утащить их с собой в свой загадочный подземный мир… И только самые храбрые мальчишки отваживались идти туда достаточно глубоко, чтобы потом пугать всех оставшихся страшными историями.

Насколько я себя помню, большая половина моих самих ранних детских воспоминаний была связана именно с лесом, который очень любила вся наша семья. Мы жили очень близко, буквально через пару домов, и ходили туда почти каждый день. Мой дедушка, которого я обожала всем своим детским сердечком, был похож для меня на доброго лесного духа. Казалось, он знал каждое дерево, каждый цветок, каждую птицу, каждую тропинку. Он мог часами рассказывать об этом, для меня совершенно удивительном и незнакомом мире, никогда не повторяясь и никогда не уставая отвечать на мои глупые детские вопросы. Эти утренние прогулки я не меняла ни на что и никогда. Они были моим любимым сказочным мирком, которым я не делилась ни с кем.

К сожалению, только спустя слишком много лет я поняла, кем по-настоящему был мой дед (к этому я ещё вернусь). Но тогда это был просто самый близкий, тёплый и хрупкий человечек с яркими горящими глазами, который научил меня слышать природу, говорить с деревьями и даже понимать голоса птиц. Тогда я ещё была совсем маленьким ребёнком и искренне думала, что это совершенно нормально. А может даже и не думала об этом вообще… Я помню моё первое знакомство с «говорящим» деревом. Это был старый огромный дуб, который был слишком объёмистым для моих маленьких детских ручонок.
– Видишь, какой он большой и добрый? Слушай его… Слушай... – как сейчас помнится тихий, обволакивающий дедушкин голос. И я услышала…
До сих пор ярко, как будто это случилось только вчера, я помню то, ни с чем не сравнимое чувство слияния с чем-то невероятно огромным и глубоким. Ощущение, что вдруг перед моими глазами начали проплывать странные видения каких-то чужих далёких жизней, не по-детски глубокие чувства радости и грусти… Знакомый и привычный мир куда-то исчез, а вместо него всё вокруг сияло, кружилось в непонятном и удивительном водовороте звуков и ощущений. Не было страха, было только огромное удивление и желание чтобы это никогда не кончалось...
Ребёнок – не взрослый, он не думает о том, что это неправильно или что этого (по всем нашим «знакомым» понятиям) не должно быть. Поэтому для меня совершенно не казалось странным, что это был другой, абсолютно ни на что не похожий мир. Это было чудесно, и это было очень красиво. И показал мне это человек, которому моё детское сердце доверяло со всей своей непосредственной чистой и открытой простотой.
Природу я очень любила всегда. Я была «намертво» слита с любым её проявлением вне зависимости от места, времени или чьих-то желаний. С самых первых дней моего сознательного существования любимым местом моих каждодневных игр являлся наш огромный старый сад. До сих пор я буквально до мельчайших подробностей помню ощущение того неповторимого детского восторга, которое я испытывала, выбегая солнечным летним утром во двор! Я с головой окуналась в тот удивительно знакомый и в то же время такой загадочный и меняющийся мир запахов, звуков и совершенно неповторимых ощущений.

Мир, который, к нашему общему сожалению, растёт и меняется соответственно тому, как растём и меняемся мы. И позже уже не остаётся ни времени, ни сил чтобы просто остановиться и прислушаться к своей душе.
Мы постоянно мчимся в каком-то диком водовороте дней и событий, гонясь каждый за своей мечтой и пытаясь, во что бы то ни стало, «добиться чего-то в этой жизни»… И постепенно начинаем забывать (если когда-то помнили вообще...) как удивительно красив распускающийся цветок, как чудесно пахнет лес после дождя, как невероятно глубока порой бывает тишина… и как не хватает иногда простого покоя нашей измученной каждодневной гонкой душе.
Обычно я просыпалась очень рано. Утро было моим любимым временем суток (что, к сожалению, полностью изменилось, когда я стала взрослым человеком). Я обожала слышать, как просыпается от утренней прохлады ещё сонная земля; видеть, как сверкают первые капли росы, ещё висящие на нежных цветочных лепестках и от малейшего ветерка бриллиантовыми звёздочками срывающиеся вниз. Как просыпается к новому дню ЖИЗНЬ… Это был по-настоящему МОЙ мир. Я его любила и была абсолютно уверена, что он будет со мной всегда…

Цитоскелет - совокупность нитевидных белковых структур – микротрубочек и микрофиламентов, составляющих опорно-двигательную систему клетки. Цитоскелетом обладают только эукариотические клетки, в клетках прокариот (бактерий) его нет, что является важным различием этих двух типов клеток. Цитоскелет придаёт клетке определённую форму даже при отсутствии жёсткой клеточной стенки. Он организует движение органоидов в цитоплазме (т. н. течение протоплазмы), лежащее в основе амёбоидного движения. Цитоскелет легко перестраивается, обеспечивая в случае необходимости изменение формы клеток. Способность клеток изменять форму обусловливает перемещение клеточных пластов на ранних стадиях зародышевого развития . При делении клетки (митозе ) цитоскелет «разбирается» (диссоциирует), а в дочерних клетках вновь происходит его самосборка.

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.

Иммуноцитохимический анализ - метод, позволяющий проводить иммунологический анализ цитологического материала в условиях сохранения морфологии клеток. ИЦХ – один из множества видов иммунохимического метода: иммуноферментного, иммунофлюоресцентного, радиоиммунного и т.п.Основой ИЦХ-метода является иммунологическая реакция антигена и антитела.

Цитоплазма эукариотических клеток пронизана трехмерной сеткой из белковых нитей (филаментов), называемой цитоскелетом. В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (6-8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Все эти волокна представляют собой полимеры, состоящие из субъединиц особых глобулярных белков.

Микрофиламенты (актиновые нити) состоят из актина - белка, наиболее распространенного в эукариотических клетках. Актин может существовать в виде мономера (G-актин, «глобулярный актин») или полимера (F-актин, «фибриллярный актин»). G-актин - асимметричный глобулярный белок (42 кДа), состоящий из двух доменов. По мере повышения ионной силы G-актин обратимо агрегирует, образуя линейный скрученный в спираль полимер, F-актин. Молекула G-актина несет прочно связанную молекулу АТФ (АТР), которая при переходе в F-актин, медленно гидролизуется до АДФ (ADP), т.е. F-актин проявляет свойства АТФ-азы.

Б. Белки промежуточных волокон

Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности. Типичными представителями этих белков являются цитокератины, десмин, виментин, кислый фибриллярный глиапротеин [КФГП (GFAP)] и нейрофиламент. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название суперспирализованной α-спирали. Такие димеры ассоциируют антипараллельно, образуя тетрамер. Агрегация тетрамеров по принципу "голова к голове" дает протофиламент. Восемь протофиламентов образуют промежуточное волокно.

В отличие от микрофиламентов и микротрубочек свободные мономеры промежуточных волокон едва ли встречаются в цитоплазме. Их полимеризация ведет к образованию устойчивых неполярных полимерных молекул.

В. Тубулин

Микротрубочки построены из глобулярного белка тубулина, представляющего собой димер α- и β-субъединиц. Тубулиновые мономеры связывают ГТФ (GTP), который медленно гидролизуется и ГДФ (GTP). С микротрубочками ассоциируют два вида белков: структурные белки лки-транслокаторы.

Материал из Википедии - свободной энциклопедии

Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зелёный, ядра клеток - в голубой цвет.

Цитоскеле́т - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки . Он присутствует во всех клетках эукариот , причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет - динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз , обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление .

Кератиновые промежуточные филаменты в клетке.

Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты , промежуточные филаменты , микротрубочки), либо по основным белкам, входящим в их состав (актин -миозиновая система, кератины , тубулин -динеиновая система).

Цитоскелет эукариот

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина , закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином - в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт .

Промежуточные филаменты

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты . Однако с выходом в 2001 году статьи Jones и соавт. (PMID 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина , актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.