Организация пространства. Советы и идеи. Сад и участок

Радиолокационная станция РЛС. Cтруктурная схема и принцип работы судовой РЛС

Радиолокационная станция (РЛС) или рада́р (англ. radar от Radio Detection and Ranging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в г., впоследствии в его написании прописные буквы были заменены строчными.

История

3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же же году , в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров . В США первый контракт военных с промышленностью был заключён в 1939 году. В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Классификация радаров

По предназначению радиолокационные станции можно классифицировать следующим образом:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • Панорамные РЛС;
  • РЛС бокового обзора;
  • Метеорологические РЛС.

По сфере применения различают военные и гражданские РЛС.

По характеру носителя:

  • Наземные РЛС
  • Морские РЛС
  • Бортовые РЛС

По типу действия

  • Первичные или пассивные
  • Вторичные или активные
  • Совмещённые

По диапазону волн:

  • Метровые
  • Сантиметровые
  • Миллиметровые

Устройство и принцип действия Первичного радиолокатора

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении времени распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передающее устройство является источником электромагнитного сигнала высокой мощности. Он может представлять из себя мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала приёмника и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмное устройство выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Когерентные РЛС

Когерентный метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

Импульсные РЛС

Принцип действия импульсного радара

Принцип определения расстояния до объекта с помощью импульсного радара

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт только в течение очень краткого времени, короткий импульс обычно приблизительно микросекунда в продолжительности, после чего он слушает эхо, в то время как импульс распространяется.

Поскольку импульс уходит далеко от радара с постоянной скоростью, время прошедшее с момента, когда импульс посылали, ко времени когда эхо получено, - ясная мера прямого расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно, это зависит от дальности обнаружения радара (данным мощностью передатчика, усилением антенны и чувствительностью приёмника). Если бы импульс посылали раньше, то эхо предыдущего импульса от отдалённой цели могло бы быть перепутано с эхом второго импульса от близкой цели.

Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду (или Герц [Гц]). Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём, примеры тому AN/APG-63, 65, 66, 67 и 70 радары. В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки и используемые алгоритмы могут обычно быстро заменяться другими, заменяя только память (ПЗУ) чипы, таким образом быстро противодействуя техники глушения противника если необходимо.

Устройство и принцип действия Вторичного радиолокатора

Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик . Служит для излучения импульсов запроса в антенну на частоте 1030 МГц

Антенна . Служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации, антенна излучает на частоте 1030МГц, и принимает на частоте 1090 МГц.

Генераторы Азимутальных меток . Служат для генерации Азимутальных меток (Azimuth Change Pulse или ACP) и генерации Метки Севера (Azimuth Reference Pulse или ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем), или 16384 Малых азимутальных меток (для новых систем), их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток, при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник . Служит для приёма импульсов на частоте 1090 МГц

Сигнальный процессор . Служит для обработки принятых сигналов

Индикатор Служит для индикации обработанной информации

Самолётный ответчик с антенной Служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

Принцип Действия Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика, для определения положения Воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Воздушные суда оборудованные ответчиками находящиеся в зоне действия луча запроса при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, Серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация типа Номер борта, Высота и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется растоянием между запросными импульсами P1 и P3 например в режиме запроса А (mode A), расстояние между запросными импульсами станции P1 и P3 равно 8 микросекунд, и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта. В режиме запроса C (mode C) расстояние между запросными импульсами станции равно 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут Воздушного судна определяется, углом поворота антенны, который в свою очередь определяется путём подсчёта Малых Азимутальных меток. Дальность определяется, по задержке пришедшего ответа Если Воздушное судно не лежит в зоне действия основного луча, а лежит в зоне действия боковых лепестков, или находится сзади антенны, то ответчик Воздушного судна при получении запроса от РЛС, получит на своём входе условие, что импульсы P1,P3

Плюсы вторичной РЛС, более высокая точность, дополнительная информация о Воздушном Судне (Номер борта, Высота), а также малое по сравнению с Первичными РЛС излучение.

Другие страницы

  • (нем.) Технология Радиолокационная станция
  • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
  • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.

Литература и сноски

Wikimedia Foundation . 2010 .

Синонимы :
  • РЛС Дуга
  • РМГ

Смотреть что такое "РЛС" в других словарях:

    РЛС - Русская логистическая служба http://www.rls.ru/​ РЛС радиолокационная станция связь Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с., С … Словарь сокращений и аббревиатур

В статье рассмотрен принцип работы и общая структурная схема судовой РЛС. Действие радиолокационных станций (РЛС) основано на использовании явления отражения радиоволн от различных препятствий, расположенных на пути их распространения, т. е. в радиолокации для определения положения объектов используется явление эха. Для этого в РЛС имеется передатчик, приемник, специальное антенно-волноводное устройство и индикатор с экраном для визуального наблюдения эхо-сигналов. Таким образом, работу радиолокационной станции можно представить так: передатчик РЛС генерирует высокочастотные колебания определенной формы, которые посылаются в пространство узким лучом, непрерывно вращающимся по горизонту. Отраженные колебания от любого предмета в виде эхо-сигнала принимаются приемником и изображаются на экране индикатора, при этом имеется возможность немедленно определять на экране направление (пеленг) на объект и его расстояние от судна.
Пеленг на объект определяется по направлению узкого радиолокационного луча, который в данный момент падает на объект и отражается от него.
Расстояние до объекта может быть получено путем измерения малых промежутков времени между посылкой зондирующего импульса и моментом приема отраженного импульса, при условии, что радиоимпульсы распрастраняются со скоростью с = 3 Х 108 м/сек. Судовые РЛС имеют индикаторы кругового обзора (ИКО), на экране которого образуется изобр ажение окружающей судно навигационной обстановки.
Широкое распространение нашли береговые РЛС, устанавливаемые в портах, на подходах к ним и на каналах или на сложных фарватерах. С их помощью стало возможным осуществлять ввод судов в порт, руководить движением судов по фарватеру, каналу в условиях плохой видимости, в результате чего значительно снижается простой судов. Эти станции в некоторых портах дополняют специальной телевизионной передающей аппаратурой, которая передает изображение с экрана радиолокационной станции на подходящие к порту суда. Передаваемые изображения принимаются на судне обычным телевизионным приемником, что в значительной степени облегчает судоводителю задачу ввода судна в порт при плохой видимости.
Береговые (портовые) РЛС могут быть использованы также диспетчером порта для наблюдения за передвижением судов, находящихся на акватории порта или на подходах к нему.
Рассмотрим принцип работы судовой РЛС с индикатором кругового обзора. Воспользуемся упрощенной блок-схемой РЛС, объясняющей ее работу (рис. 1).
Запускающий импульс, вырабатываемый генератором ЗИ, осуществляет запуск (синхронизацию) всех блоков РЛС.
При поступлении запускающих импульсов в передатчик модулятор (Мод) вырабатывает прямоугольный импульс длительностью в несколько десятых микросекунд, который подается на магнетронный генератор (МГ).

Магнетрон генерирует зондирующий импульс мощностью 70-80 квт длиной волны 1=3, 2 см, частотой /с = 9400 Мгц. Импульс магнетрона через антенный переключатель (АП) по специальному волноводу подводится к антенне и излучается в пространство узким направленным лучом. Ширина луча в горизонтальной плоскости 1-2°, а вертикальной около 20°. Антенна, вращаясь вокруг вертикальной оси со скоростью 12-30 об/мин, облучает все окружающее судно пространство.
Отраженные сигналы принимаются той же антенной, поэтому АП производит поочередное подключение антенны то к передатчику, то к приемнику. Отраженный импульс через антенный переключатель поступает на смеситель, к которому подключен клистронный генератор (КГ) . Последний генерирует маломощные колебания с частотой f Г=946 0 Мгц.
В смесителе в результате сложения колебаний выделяется промежуточная частота fПР=fГ-fС=60 Мгц, которая затем поступает на усилитель промежуточной частоты (УПЧ), он усиливает отраженные импульсы. С помощью детектора, стоящего на выходе УПЧ, усиленные импульсы преобразуются в видеоимпульсы, которые через видеосмеситель (ВС) поступают на видеоусилитель. Здесь они усиливаются и поступают на катод электроннолучевой трубки (ИКО).
Электроннолучевая трубка представляет собой вакуумную электронную лампу особой конструкции (см. рис. 1).
Она состоит из трех основных частей: электронной пушки с фокусирующим устройством, отклоняющей магнитной системы и стеклянной колбы с экраном, обладающим свойством послесвечения.
Электронная пушка 1-2 и фокусирующее устройство 4 формируют плотный, хорошо сфокусированный луч электронов, а отклоняющая система 5 служит для управления этим электронным лучом.
После прохождения отклоняющей системы электронный луч ударяет в экран 8, который покрыт специальным веществом, обладающим способностью светиться при бомбардировке его электронами. Внутренняя сторона широкой части трубки покрывается специальным проводящим слоем (графитом). Этот слой является основным анодом трубки 7 и имеет контакт, на который подается высокое положительное напряжение. Анод 3 - ускоряющий электрод.
Яркость светящейся точки на экране ЭЛТ регулируется изменением отрицательного напряжения на управляющем электроде 2 с помощью потенциометра «Яркость». В нормальном состоянии трубка заперта отрицательным напряжением на управляющем электроде 2.
Изображение окружающей обстановки на экране индикатора кругового обзора получается следующим образом.
Одновременно с началом излучения передатчиком зондирующего импульса запускается генератор развертки, состоящий из мультивибратора (MB) и генератора пилообразного тока (ГПТ), который генерирует пилообразные импульсы. Эти импульсы подаются на отклоняющую систему 5, имеющую механизм вращения, который связан с принимающим сельсином 6.
Одновременно прямоугольный положительный импульс напряжения подается на управляющий электрод 2 и отпирает ее. С появлением в отклоняющей системе ЭЛТ нарастающего (пилообразного) тока электронный луч начинает плавно отклоняться от центра к краю трубки и на экране появляется светящийся радиус развертки. Радиальное движение луча по экрану видно очень слабо. В момент прихода отраженного сигнала потенциал между сеткой и управляющим катодом возрастает, трубка отпирается и на экране начинает светиться точка, соответствующая положению в данный момент луча, совершающего радиальное движение. Расстояние от центра экрана до светящейся точки будет пропорционально расстоянию до объекта. Отклоняющая система имеет вращательное движение.
Механизм вращения отклоняющей системы связан синхронной передачей с сельсином-датчиком антенны 9, поэтому отклоняющая катушка вращается вокруг горловины ЭЛТ синхронно и синфазно с антенной 12. В результате этого на экране ЭЛТ появляется вращающийся радиус развертки.
При повороте антенны поворачивается линия развертки и на экране индикатора начинают светиться новые участки, соответствующие импульсам, отражающимся от различных объектов, находящихся на различных пеленгах. За полный оборот антенны вся поверхность экрана ЭЛТ покрывается множеством радиальных линий разверток, которые засвечиваются только при наличии на соответствующих пеленгах отражающих объектов. Таким образом, па экране трубки воспроизводится полная картина окружающей судно обстановки.
Для ориентировочного измерения расстояний до различных объектов на экране ЭЛТ наносятся путем электронной подсветки, вырабатываемой в блоке ПКД масштабные кольца (неподвижные круги дальности). Для более точного измерения расстояния в РЛС применяется специальное дальномерное устройство, с так называемым подвижным кругом дальности (ПКД).
Для измерения расстояния до какой-либо цели на экране ЭЛТ необходимо, вращая ручку дальномера, совместить ПКД с меткой цели и взять отсчет в милях и десятых долях по счетчику, механически связанному с рукояткой дальномера.
Кроме эхо-сигналов и дистанционных колец, на экране ЭЛТ засвечивается отметка курса 10 (см. рис. 1). Это достигается путем подачи на управляющую сетку ЭЛТ положительного импульса в тот момент, когда максимум излучения антенны проходит направление, совпадающее с диаметральной плоскостью судна.
Изображение на экране ЭЛТ может быть ориентировано относительно ДП судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). В последнем случае отклоняющая система трубки имеет также синхронную связь с гирокомпасом.

РЛС излучает электромагнитную энергию и обнаруживает эхосигналы приходящие от отраженных объектов а так же определяет их характеристики. Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута. В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов.

РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута.

В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением. Также приведены параметры системы и формулы для ее расчета.

В расчетной части были определены следующие параметры: максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута.


1. Теоретическая часть

1.1 Функциональная схема РЛС кругового обзора

Радиолокация – область радиотехники, обеспечивающая радиолокационное наблюдение различных объектов, то есть их обнаружение, измерение координат и параметров движения, а также выявление некоторых структурных или физических свойств путем использования отраженных или переизлученных объектами радиоволн либо их собственного радиоизлучения. Информация, получаемая в процессе радиолокационного наблюдения, называется радиолокационной. Радиотехнические устройства радиолокационного наблюдения называются радиолокационными станциями (РЛС) или радиолокаторами. Сами же объекты радиолокационного наблюдения именуются радиолокационными целями или просто целями. При использовании отраженных радиоволн радиолокационными целями являются любые неоднородности электрических параметров среды (диэлектрической и магнитной проницаемостей, проводимости), в которой распространяется первичная волна. Сюда относятся летательные аппараты (самолеты, вертолеты, метеорологические зонды и др.), гидрометеоры (дождь, снег, град, облака и т. д.), речные и морские суда, наземные объекты (строения, автомобили, самолеты в аэропортах и др.), всевозможные военные объекты и т. п. Особым видом радиолокационных целей являются астрономические объекты.

Источником радиолокационной информации является радиолокационный сигнал. В зависимости от способов его получения различают следующие виды радиолокационного наблюдения.

  1. Радиолокация с пассивным ответом, основанная на том, что излучаемые РЛС колебания – зондирующий сигнал – отражаются от цели и попадают в приемник РЛС в виде отраженного сигнала. Такой вид наблюдения иногда называют также активной радиолокацией с пассивным ответом.

Радиолокация с активным ответом, именуемая активной радиолокацией с активным ответом, характеризуется тем, что ответный сигнал является не отраженным, а переизлученным с помощью специального ответчика – ретранслятора. При этом заметно повышается дальность и контрастность радиолокационного наблюдения.

Пассивная радиолокация основана на приеме собственного радиоизлучения целей , преимущественно миллиметрового и сантиметрового диапазонов. Если зондирующий сигнал в двух предыдущих случаях может быть использован как опорный, что обеспечивает принципиальную возможность измерения дальность и скорости, то в данном случае такая возможность отсутствует.

Систему РЛС можно рассматривать как радиолокационный канал наподобие радиоканалов связи или телеметрии. Основными составными частями РЛС являются передатчик, приемник, антенное устройство, оконечное устройство.

Главные этапы радиолокационного наблюдения – это обнаружение, измерение, разрешение и распознавание.

Обнаружением называется процесс принятия решения о наличии целей с допустимой вероятностью ошибочного решения.

Измерение позволяет оценить координаты целей и параметры их движения с допустимыми погрешностями.

Разрешение заключается в выполнении задач обнаружения и измерения координат одной цели при наличии других, близко расположенных по дальности, скорости и т. д.

Распознавание дает возможность установить некоторые характерные признаки цели: точечная она или групповая, движущаяся или групповая и т. д.

Радиолокационная информация, поступающая от РЛС, транслируется по радиоканалу или по кабелю на пункт управления. Процесс слежения РЛС за отдельными целями автоматизирован и осуществляется с помощью ЭВМ.

Навигация самолетов по трассе обеспечивается посредством таких же РЛС, которые применяются в УВД. Они используются как для контроля выдерживания заданной трассы, так и для определения местоположения в процессе полета.

Для выполнения посадки и ее автоматизации наряду с радиомаячными системами широко используются РЛС посадки, обеспечивающие слежение за отклонением самолета от курса и глиссады планирования.

В гражданской авиации используют также ряд бортовых радиолокационных устройств. Сюда, прежде всего, относится бортовая РЛС для обнаружения опасных метеообразований и препятствий. Обычно она же служит для обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам.

Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов. РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Рассмотрим работу импульсной активной РЛС обнаружения воздушных целей для управления воздушным движением (УВД), структура которого приведена на рисунке 1. Устройство управления обзором (управление антенной) служит для просмотра пространства (обычно кругового) лучом антенны, узким в горизонтальной плоскости и широким в вертикальной.

В рассматриваемой РЛС используется импульсный режим излучения, поэтому в момент окончания очередного зондирующего радиоимпульса единственная антенна переключается от передатчика к приемнику и используется для приема до начала генерации следующего зондирующего радиоимпульса, после чего антенна снова подключается к передатчику и так далее.

Эта операция выполняется переключателем прием-передача (ППП). Пусковые импульсы, задающие период повторения зондирующих сигналов и синхронизирующие работу всех подсистем РЛС, генерирует синхронизатор. Сигнал с приемника после аналого-цифрового преобразователя (АЦП) поступает на аппаратуру обработки информации – процессор сигналов, где выполняется первичная обработка информации, состоящая в обнаружении сигнала и изменении координат цели. Отметки целей и трассы траекторий формируются при первичной обработке информации в процессоре данных.

Сформированные сигналы вместе с информацией об угловом положении антенны передаются для дальнейшей обработки на командный пункт, а также для контроля на индикатор кругового обзора (ИКО). При автономной работе радиолокатора ИКО служит основным элементом для наблюдения воздушной обстановки. Такая РЛС, обычно ведет обработку информации в цифровой форме. Для этого предусмотрено устройство преобразования сигнала в цифровой код (АЦП).

Рисунок 1 Функциональная схема РЛС кругового обзора

1.2 Определения и основные параметры системы. Формулы для расчета

Основные тактические характеристики РЛС

Максимальная дальность действия

Максимальная дальность действия задается тактическими требованиями и зависит от многих технических характеристик РЛС, условий распространения радиоволн и характеристик целей, которые в реальных условиях использования станций подвержены случайным изменениям. Поэтому максимальная дальность действия является вероятностной характеристикой.

Уравнение дальности в свободном пространстве (т. е. без учета влияния земли и поглощения в атмосфере) для точечной цели устанавливает связь между всеми основными параметрами РЛС.

где E изл - энергия, излучаемая в одном импульсе ;

S а - эффективная площадь антенны ;

S эфо - эффективная отражающая площадь цели ;

 - длина волны ;

к р - коэффициент различимости (отношение энергий сигнал/шум на входе приемника, при котором обеспечивается прием сигналов с заданными вероятностью правильного обнаружения W по и вероятностью ложной тревоги W лт );

Е ш - энергия шумов, действующих при приёме .

Где Р и - и мпульсная мощность ;

 и , - длительность импульсов .

Где d аг - горизонтальный размер зеркала антенны ;

d ав - вертикальный размер зеркала антенны .

k р = k р.т. ,

где k р.т. - теоретический коэффициент различимости.

k р.т. =,

где q 0 - параметр обнаружения;

N - количество импульсов, принимаемых от цели.

где W лт - вероятность ложной тревоги;

W по - вероятность правильного обнаружения .

где t обл ,

F и - частота посылок импульсов ;

Q a0,5 - ширина диаграммы направленности антенны на уровне 0,5 по мощности

где - угловая скорость вращения антенны.

где Т обз - период обзора.

где k =1,38  10 -23 Дж/град - постоянная Больцмана;

k ш - коэффициент шума приемника;

T - температура приемника в градусах Кельвина (T =300К).

Максимальная дальность действия РЛС с учетом поглощения энергии радиоволн.

где  осл - коэффициент ослабления ;

 D - ширина ослабляющего слоя .

Минимальная дальность действия РЛС

Если антенная система не вносит ограничений, то минимальная дальность действия РЛС определяется длительностью импульса и временем восстановления антенного переключателя.

где с - скорость распространения электромагнитной волны в вакууме, c = 3∙10 8 ;

 и , - длительность импульсов ;

τ в - время восстановления антенного переключателя.

Разрешающая способность РЛС по дальности

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле

 (D )=  (D ) пот +  (D ) инд ,

г де  (D ) пот - потенциальная разрешающая способность по дальности;

 (D ) инд - разрешающая способность индикатора по дальности.

Для сигнала в виде некогерентной пачки прямоугольных импульсов:

где с - скорость распространения электромагнитной волны в вакууме; c = 3∙10 8 ;

 и , - длительность импульсов ;

 (D ) инд - разрешающая способность индикатора по дальности вычисляется по формуле

г де D шк - предельное значение шкалы дальности;

k э = 0,4 - коэффициент использования экрана,

Q ф - качество фокусировки трубки.

Разрешающая способность РЛС по азимуту

Реальную разрешающую способность по азимуту определяется по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд ,

где  ( аз ) пот - потенциальная разрешающая способность по азимуту при аппроксимации диаграммы направленности гауссовой кривой;

 ( аз ) инд - разрешающая способность индикатора по азимуту

 ( аз ) пот =1,3  Q a 0,5 ,

 ( аз ) инд = d n M f ,

где d n - диаметр пятна электронно-лучевой трубки;

M f – масштаб шкалы.

где r - удаление отметки от центра экрана.

Точность определения координат по дальност и

Точность определения дальности зависит от точности измерения запаздывания отраженного сигнала, ошибок из-за неоптимальности обработки сигнала, от наличия неучтенных запаздываний сигнала в трактах передачи, приема и индикации, от случайных ошибок измерения дальности в индикаторных устройствах.

Точность характеризуется ошибкой измерения. Результирующая среднеквадратическая ошибка измерения дальности определяется по формуле:

где  (D ) пот - потенциальная ошибка измерения дальности.

 (D ) распр – ошибка из за непрямолинейности распространения;

 (D ) апп - аппаратурная ошибка.

где q 0 - удвоенное отношение сигнал/шум.

Точность определения координат по азимуту

Систематические ошибки при измерении азимута могут возникнуть при неточном ориентировании антенной системы РЛС и вследствие несоответствия между положением антенны и масштабной электрической шкалой азимута.

Случайные ошибки измерения азимута цели обуславливаются нестабильностью работы системы вращения антенны, нестабильностью схем формирования отметок азимута, а также ошибками считывания.

Результирующая среднеквадратическая ошибка измерения азимута определяется:

Исходные данные (вариант 5)

  1. Длина волны  , [см] …................................................................. ....... .... 6
  2. Импульсная мощность Р и , [кВт] ..................................................... ....... 600
  3. Длительность импульсов  и , [мкс] .................................................. ....... 2,2
  4. Частота посылок импульсов F и , [Гц] .................................................... 700
  5. Горизонтальный размер зеркала антенны d аг [м] ................................ 7
  6. Вертикальный размер зеркала антенны d ав , [м] ................................... 2,5
  7. Период обзора Т обз , [с] ..................................................................... ....... 25
  8. Коэффициент шума приёмника k ш ................................................. ....... 5
  9. Вероятность правильного обнаружения W по ............................. .......... 0,8
  10. Вероятность ложной тревоги W лт.. ................................................ ....... 10 -5
  11. Диаметр экрана индикатора кругового обзора d э , [мм] .................... 400
  12. Эффективная отражающая площадь цели S эфо , [м 2 ] …...................... 30
  13. Качество фокусировки Q ф ............................................................... ...... 400
  14. Предельное значение шкалы дальности D шк1 , [км] ........................... 50 D шк2 , [км] .......................... 400
  15. Измерительные метки дальности  D , [км] ......................................... 15
  16. Измерительные метки азимута  , [град] ..................................... ...... 4

2. Расчет тактических показателей РЛС кругового обзора

2.1 Расчет максимальной дальности действия с учётом поглощения

Сначала рассчитывается максимальная дальность действия РЛС без учёта ослабления энергии радиоволн при распространении. Расчет проводится по формуле:

(1)

Подсчитаем и установим величины, входящие в это выражение:

Е изл = Р и  и =600  10 3  2,2  10 -6 =1,32 [Дж]

S а = d аг d ав =  7  2,5=8,75 [м 2 ]

k р = k р.т.

k р.т. =

101,2

0,51 [град]

14,4 [град/с]

Подставляя полученные значения, будем иметь:

t обл = 0,036 [с], N = 25 импульсов и k р.т. = 2 ,02.

Пусть = 10, тогда k P =20.

Е ш - энергия шумов, действующих при приёме:

E ш =kk ш T =1,38  10 -23  5  300=2,07  10 -20 [Дж]

Подставляя все полученные значения в (1), находим 634,38 [км]

Теперь определим максимальную дальность действия РЛС с учетом поглощения энергии радиоволн:

(2)

Значение  осл находим по графикам. Для  =6 см  осл принимаем равным 0,01 дБ/км. Предположим, что ослабление происходит на всей дальности действия. При таком условии формула (2) принимает вид трансцендентного уравнения

(3)

Уравнение (3) решим графоаналитическим способом. Для  осл = 0,01 дБ/км и D макс = 634,38 км рассчитываем D макс.осл = 305,9 км.

Вывод: Из полученных расчетов видно, что максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.ос л = 305,9 [км].

2.2 Расчет реальной разрешающей способности по дальности и азимуту

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле:

 (D) =  (D) пот +  (D) инд

Для сигнала в виде некогерентной пачки прямоугольных импульсов

0,33 [км]

для D шк1 =50 [км],  (D) инд1 =0,31 [км]

для D шк2 =400 [км],  (D) инд2 =2,50 [км]

Реальная разрешающая способность по дальности:

для D шк1 =50 км  (D ) 1 =  (D) пот +  (D) инд1 =0,33+0,31=0,64 [км]

для D шк2 =400 км  (D ) 2 =  (D) пот +  (D) инд2 =0,33+2,50=2,83 [км]

Реальную разрешающую способность по азимуту рассчитаем по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд

 ( аз ) пот =1,3  Q a 0,5 =0,663 [град]

 ( аз ) инд = d n M f

Принимая r = k э d э / 2 (отметка на краю экрана), получим

0,717 [град]

 ( аз )=0,663+0,717=1,38 [град]

Вывод: Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км], для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:

 ( аз )=1,38 [град].

2.3 Расчет реальной точности измерения дальности и азимута

Точность характеризуется ошибкой измерения. Результирующую среднеквадратическую ошибку измерения дальности рассчитаем по формуле:

40,86

 (D ) пот =[км]

Ошибкой из-за непрямолинейности распространения  (D ) распр пренебрегаем. Аппаратурные ошибки  (D ) апп сводятся к ошибкам отсчета по шкале индикатора  (D ) инд . Принимаем метод отсчета по электронным меткам (масштабным кольцам) на экране индикатора кругового обзора.

 (D ) инд = 0,1  D =1,5 [км] , где  D - цена деления шкалы.

 (D ) = = 5 [км]

Результирующую среднеквадратическую ошибку измерения азимута определим аналогично:

0,065

 ( аз ) инд =0,1   = 0,4

Вывод: Расчитав результирующую среднеквадратическую ошибку измерения дальности, получаем  (D )  ( аз ) =0,4 [град].

Заключение

В данной курсовой работе произведен расчет параметров импульсной активной РЛС (максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута) обнаружения воздушных целей для управления воздушным движением.

В ходе расчетов были получены следующие данные:

1. Максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.осл = 305,9 [км];

2. Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км];

для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:  ( аз )=1,38 [град].

3. Результирующая среднеквадратическая ошибка измерения дальности получаем  (D ) =1,5 [км]. Среднеквадратическая ошибка измерения азимута  ( аз ) =0,4 [град].

К достоинствам импульсных РЛС следует отнести простоту измерения расстояний до целей и их разрешения по дальности, особенно при наличии многих целей в зоне обзора, а также практически полную временную развязку между принимаемыми и излучаемыми колебаниями. Последнее обстоятельство позволяет применять одну и ту же антенну, как для передачи, так и для приема.

Недостатком импульсных РЛС является необходимость использования большой пиковой мощности излучаемых колебаний, а так же невозможность измерения малых дальностей – большая мертвая зона.

РЛС применяются для решения широкого круга задач: от обеспечения мягкой посадки космических аппаратов на поверхность планет до измерения скорости движения человека, от управления средствами поражения в системах противоракетной и противосамолетной обороны до индивидуальной защиты.

Список литературы

  1. Васин В.В. Дальность действия радиотехнических измерительных систем. Методическая разработка. - М.:МИЭМ 1977г.
  2. Васин В.В. Разрешающая способность и точность измерений в радиотехнических измерительных системах. Методическая разработка. - М.: МИЭМ 1977г.
  3. Васин В.В. Методы измерения координат и радиальной скорости объектов в радиотехнических измерительных системах. Конспект лекций. - М.: МИЭМ 1975г.

4. Бакулев П.А. Радиолокационные системы. Учебник для ВУЗов. – М.: «Радио-

Техника» 2004г.

5. Радиотехнические системы : Учебник для вузов / Ю. М. Казаринов [и др.]; Под ред. Ю. М. Казаринова. — М.: Академия, 2008. — 590 с.:

Другие похожие работы, которые могут вас заинтересовать.вшм>

1029. Рзработка программного обеспечения лабораторного комплекса компьютерной обучающей системы(КОС) «Экспертные системы» 4.25 MB
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем...
3242. Разработка системы цифровой коррекции динамических характеристик первичного преобразователя измерительной системы 306.75 KB
Обработка сигналов во временной области широко используется в современной электронной осциллографии и в цифровых осциллографах. А для представления сигналов в частной области используются цифровые анализаторы спектра. Для изучения математических аспектов обработки сигналов используются пакеты расширения
13757. Создание сетевой системы тестирования электронного сопровождения курса Операционные системы (на примере инструментальной оболочки Joomla) 1.83 MB
Программа для составления тестов позволит работать с вопросами в электронном виде использовать все виды цифровой информации для отображения содержания вопроса. Целью курсовой работы является создание современной модели webсервиса тестирования знаний с помощью средств webразработки и программная реализация для эффективной работы тестовой системы – защита от копирования информации и списывания при контроле знаний т. Последние два означают создание равных для всех условий прохождения контроля знаний невозможность списывания и...
523. Функциональные системы организма. Работа нервной системы 4.53 KB
Функциональные системы организма. Работа нервной системы Помимо анализаторов то есть сенсорных систем в организме функционируют другие системы. Эти системы могут быть отчетливо оформлены морфологически то есть иметь четкую структуру. К таким системам относятся например системы кровообращения дыхания или пищеварения.
6243. 44.47 KB
Системы класса CSRP Customer Synchronized Resource Plnning. Системы CRM Customer Reltionships Mngement управление отношениями с клиентами. Системы класса ЕАМ. Несмотря на то что передовые предприятия для укрепления на рынке внедряют мощнейшие системы класса ERP этого уже оказывается недостаточно для повышения доходов предприятия.
3754. Системы счисления 21.73 KB
Число - основное понятие математики, которое обычно означает либо количество, размер, вес и тому подобное, либо порядковый номер, расположение в последовательности, код, шифр и тому подобное.
4228. Социальные системы 11.38 KB
Парсонс визначає як складову більш загальної системи дії. Іншими складовими загальної системи дії є система культури система особистості та система поведінкового організму. Розмежування між чотирма виокремленими підсистемами дії можна провести за характерними для них функціями. Щоб система дії могла існувати вона має бути здатна до адаптації досягнення мети інтеграції і збереження взірця тобто має задовольняти чотирьом функціональним вимогам.
9218. КУРСОВЫЕ СИСТЕМЫ ЛА 592.07 KB
Комплексный метод определения курса. Для определения курса самолётов была создана самая многочисленная группа курсовых приборов и систем основанных на различных физических принципах работы. Поэтому при измерении курса возникают погрешности обусловленные вращением Земли и перемещением летательного аппарата относительно Земли. Для уменьшения погрешностей в показаниях курса производится коррекция кажущегося ухода гирополукомпаса и коррекция горизонтального положения оси ротора гироскопа.
5055. Политические системы 38.09 KB
Функции модернизации политической систем. Рассматривая политику как сферу взаимодействия человека и государства можно выделить два варианта построения этих связей постоянно но отнюдь не равномерно распространяющихся в истории политической жизни.
8063. Мультибазовые системы 7.39 KB
Мультибазовые системы позволяют конечным пользователям разных узлов получать доступ и совместно использовать данные без необходимости физической интеграции существующих баз данных. Они обеспечивают пользователям возможность управлять базами данных их собственных узлов без централизованного контроля который характерен для обычных типов распределенных СУБД. Администратор локальной базы данных может разрешить доступ к определенной части своей базы данных посредством создания схемы экспорта.

Принцип работы импульсной РЛС можно уяснить, рассмотрев «Упрощенную структурную схему импульсной РЛС (рис. 3.1, слайд 20, 25 ) и графики, поясняющие работу импульсного радиолокатора (рис. 3.2, слайд 21, 26 ).

Работу импульсной РЛС лучше всего начать рассматривать с блока синхронизации (блока запуска) станции. Этот блок задает «ритм» работы станции: он задает частоту повторения зондирующих сигналов, синхронизирует работу индикаторного устройства с работой передатчика станции. Синхронизатор вырабатывает кратковременные остроконечные импульсы И зап с определенной частотой повторения Т п . Конструктивно синхронизатор может быть выполнен в виде отдельного блока или представлять единое целое с модулятором станции.

Модулятор управляет работой генератора СВЧ, включает и выключает его. Модулятор запускается импульсами синхронизатора и формирует мощные прямоугольные импульсы необходимой амплитуды U м и длительности τ и . Генератор СВЧ включается в работу только при наличии импульсов модулятора. Частота включения генератора СВЧ, а, следовательно, и частота повторения зондирующих импульсов определяется частотой импульсов синхронизатора Т п . Продолжительность работы генератора СВЧ при каждом его включении (то есть длительность зондирующего импульса) зависит от длительности формирующего в модуляторе импульса τ и . Длительность импульса модулятора τ и обычно составляет единицы микросекунд, а паузы между ними – сотни и тысячи микросекунды.

Под действием напряжения модулятора генератор СВЧ формирует мощные радиоимпульсы U ген , длительность и форма которых определяется длительностью и формой импульсов модулятора. Колебания высокой частоты, то есть зондирующие импульсы от генератора СВЧ, поступают через антенный переключатель в антенну. Частота колебаний радиоимпульсов определяется параметрами генератора СВЧ.

Антенный переключатель (АП) обеспечивает возможность работы передатчика и приемника на одну общую антенну. На время генерации зондирующего импульса (мкс) он подключает антенну к выходу передатчика и блокирует вход приемника, а на нее остальное время (время паузы – сотни, тысячи мкс) подключает антенну к входу приемника и отключает ее от передатчика. В импульсный РЛС в качестве антенных переключателей применяются автоматические быстродействующие переключатели.

Антенна преобразует колебания СВЧ в электромагнитную энергию (радиоволны) и фокусирует ее в узкий пучок. Отраженные от цели сигналы принимаются антенной, проходят через антенный переключатель и поступают на вход приемника U с , где они селектируются, усиливаются, детектируются и через аппаратуру защиты от помех подаются на индикаторные устройства.

Аппаратура защиты от помех включается только при наличии в зоне действия РЛС пассивных и активных помех. Подробно эта аппаратура будет изучаться в теме 7.

Индикаторное устройство является оконечным устройством РЛС и служит для отображения и съема радиолокационной информации. Электрическая схема и конструкция индикаторных устройств определяется практическим назначением станции и могут быть весьма различными. Например , для РЛС обнаружения с помощью индикаторных устройств должна воспроизводиться воздушная обстановка и определяться координаты целей Д и β. Эти индикаторы называются индикаторами кругового обзора (ИКО). В РЛС измерения высоты полета цели (высотомерах) используются индикаторы высоты. Индикаторы дальности измеряют только дальность до цели и используются для контроля.

Для точного определения дальности необходимо измерять интервал времени t з (десятки и сотни мкс) с высокой точностью, то есть требуются приборы с весьма малой инерционностью. Поэтому в индикаторах дальности в качестве измерительных приборов используются электронно-лучевые трубки (ЭЛТ).

Примечание. Принцип измерения дальности был изучен в занятии 1, поэтому при изучении этого вопроса основное внимание уделить формированию развертки на ИКО.

Сущность измерения дальности (время запаздывания t з ) с помощью ЭЛТ можно пояснить на примере использования линейной развертки в трубке с электростатическим управлением электронным лучом.

При линейной развертке в ЭЛТ электронный луч под действием напряжения развертки U р периодически перемещается с постоянной скоростью по прямой слева направо (рис. 1.7,слайд 9, 12 ). Напряжение развертки вырабатывается специальным генератором развертки, который запускается тем же импульсом синхронизатора, что и модулятор передатчика. Поэтому движение луча по экрану начинается каждый раз в момент посылки зондирующего импульса.

При использовании амплитудной отметки цели отраженный сигнал, поступающий с выхода приемника, вызывает отклонение луча в перпендикулярном направлении. Таким образом, отраженный сигнал можно видеть на экране трубки. Чем дальше находится цель, тем больше времени проходит до момента появления отраженного импульса и дальше вправо успевает переместиться луч вдоль линии развертки. Очевидно, каждой точке линии развертки соответствует определенный момент прихода отраженного сигнала и, следовательно, определенное значение дальности.

В РЛС, работающих в режиме кругового обзора, используются индикаторы кругового обзора (ИКО) и ЭЛТ с электромагнитным отклонением луча и яркостной отметкой. Антенна РЛС с узконаправленным лучом (ДН) перемещается механизмом вращения антенны в горизонтальной плоскости и «просматривает» окружающее пространство (рис. 3.3, слайд,

На ИКО линия развертки дальности вращается по азимуту синхронно с антенной, а начало движения электронного луча от центра трубки в радиальном направлении совпадает с моментом излучения зондирующего импульса. Синхронное вращение развертки на ИКО с антенной РЛС осуществляется при помощи силового синхронного привода (ССП). Ответные сигналы высвечиваются на экране индикатора в виде яркостной отметки.

ИКО позволяет одновременно определять дальность Д и азимут β цели. Для удобства отсчета на экране ИКО электронным способом наносятся масштабные отметки дальности, имеющие вид окружностей и масштабные отметки азимута в виде ярких радиальных линий (рис. 3.3, слайд, 8, 27 ).

Примечание. Используя телевизионную установку и карточку ТВ предложить студентам определить координаты целей. Указать масштаб индикатора: отметки дальности следуют через 10 км, отметки азимута – через 10 градусов.

В Ы В О Д

(слайд 28)

    Определение дальности до объекта при импульсном методе сводится к измерению времени запаздывания t з отраженного сигнала относительно зондирующего импульса. Момент излучения зондирующего импульса берется за начало отсчета времени распространения радиоволн.

    Достоинства импульсных РЛС:

    удобство визуального наблюдения одновременно всех целей, облучаемых антенной в виде отметок на экране индикаторов;

    поочередная работа передатчика и приемника позволяет использовать одну общую антенну для передачи и приема.

Второй учебный вопрос.

Основные показатели импульсного метода

Основными показателями импульсного метода являются (слайд 29) :

Однозначно определяемая максимальная дальность, Д ;

    разрешающая способность по дальности, δД ;

    минимальная определяемая дальность, Д min .

Рассмотрим эти показатели.

      Однозначно определяемая максимальная дальность

Максимальная дальность действия РЛС определяется основной формулой радиолокации и зависит от параметров РЛС.

Однозначность определения дальности до объекта зависит от периода следования зондирующих импульсов Т п . Далее этот вопрос изложить следующим образом.

Максимальная дальность действия РЛС равна 300 км. Определить время задержки до цели, находящейся на этой дальности

Период повторения зондирующих импульсов выбран равным 1000 мкс. Определить дальность до цели, время задержки до которой равно Т п

В воздушном пространстве находятся две цели: цель № 1 на дальности 100 км и цель № 2 на дальности 200 км. Как будут выглядеть отметки от этих целей на индикаторе РЛС (рис. 3.4, слайд 22, 30 ).

При зондировании пространства импульсами с периодом повторения 1000 мкс отметка от цели № 1 будет высвечиваться на дальности 50 км, так как после дальности 150 км начнется новый период развертки и дальняя цель даст отметку в начале шкалы (на дистанции 50 км). Отсчитанная дальность не соответствует реальной.

Как исключить неоднозначность в определении дальности?

После обобщения ответов студентов сделать вывод:

Для однозначного определения дальности необходимо период повторения зондирующих импульсов выбирать в соответствии с заданной максимальной дальностью действия РЛС, то есть

Для заданной дальности 300 км период повторения зондирующих импульсов должен быть больше 2000 мкс или частота повторения должна быть меньше 500 Гц.

Кроме того, максимально определяемая дальность зависит от ширины ДНА, скорости вращения антенны и необходимого числа импульсов, отраженных от цели за один оборот антенны.

Разрешающей способностью по дальности (δД) называется то минимальное расстояние между двумя целями, находящимися на одном азимуте и угле места, при котором отраженные от них сигналы наблюдаются на экране индикатора еще раздельно (рис. 3.5, слайд 23, 31, 32 ).

При заданной длительности зондирующего импульса τ и и расстоянии между целями ∆Д 1 цели № 1 и № 2 облучаются раздельно. При той же длительности импульса, но при расстоянии между целями ∆Д 2 цели № 3 и № 4 облучаются одновременно. Следовательно, в первом случае на экране ИКО будут видны раздельно, а во втором – слитно. Отсюда вытекает, что для раздельного приема импульсных сигналов необходимо, чтобы интервал времени между моментами их приема был больше длительности импульса τ и (∆ t > τ и )

Минимальная разность (Д 2 – Д 1 ), при которой цели видны на экране раздельно, по определению есть разрешающая способность по дальности δД, следовательно

Помимо длительности импульса τ и на разрешающую способность станции по дальности оказывает влияние разрешающая способность индикатора, определяемая масштабом развертки и минимальным диаметром светящегося пятна на экране ЭЛТ (d п 1 мм). Чем крупнее масштаб развертки дальности и лучше фокусировка луча ЭЛТ, тем лучше разрешающая способность индикатора.

В общем случае разрешающая способность РЛС по дальности равна

где δД и – разрешающая способность индикатора.

Чем меньше δД , тем лучше разрешающая способность. Обычно разрешающая способность РЛС по дальности имеет величину δД = (0,5...5) км.

В отличие от разрешающей способности по дальности разрешающая способность по угловым координатам (по азимуту δβ и углу места δε ) не зависит от метода радиолокации и определяется шириной диаграммы направленности антенны в соответствующей плоскости, которую принято отсчитывать по уровню половинной мощности.

Разрешающая способность РЛС по азимуту δβ о равна:

δβ о = φ 0,5р о + δβ и о ,

где φ 0,5р о – ширина диаграммы направленности по половинной мощности в горизонтальной плоскости;

δβ и о - разрешающая способность по азимуту индикаторной аппаратуры.

Высокие разрешающие способности РЛС позволяют раздельно наблюдать и определять координаты близко расположенных целей.

Минимальная определяемая дальность – это наименьшее расстояние, на котором станция еще может обнаруживать цель. Иногда пространства вокруг станции, в котором цели не обнаруживаются, называют «мертвой» зоной (слайд 33 ).

Использование в импульсной РЛС одной антенны для передачи зондирующих импульсов и приема отраженных сигналов требует отключения приемника на время излучения зондирующего импульса τ u . Поэтому отраженные сигналы, приходящие к станции в момент, когда ее приемник не подключен к антенне, не будут приняты и зарегистрированы на индикаторах. Продолжительность времени, в течение которого приемник не может принимать отраженные сигналы, определяется длительностью зондирующего импульса τ u и временем, необходимым для переключения антенны с передачи на прием после воздействия на него зондирующего импульса передатчика t в .

Зная это время, значение минимальной дальности Д min импульсной РЛС можно определить по формуле

где τ u - длительность зондирующего импульса РЛС;

t в - время включения приемника после окончания зондирующего импульса передатчика (единицы – мкс).

Например . При τ u = 10мкс Д min = 1500 м

при τ u = 1 мкс Д min = 150 м.

Следует иметь ввиду, что к увеличению радиуса «мертвой» зоны Д min приводит наличие на экране индикатора отраженный от местных предметов и ограниченность пределов поворота антенны по углу места.

В Ы В О Д

Импульсный метод радиолокации эффективен при измерении дальностей объектов, находящихся на больших расстояниях.

Третий учебный вопрос

Метод непрерывного излучения

Наряду с использованием импульсного метода радиолокации можно осуществить с помощью установок с непрерывным излучением энергии. При непрерывном методе излучения представляется возможность посылать большую энергию в направлении на цель.

Наряду с преимуществом энергетического порядка метод непрерывного излучения по ряду показателей уступает импульсному методу. В зависимости от того, какой параметр отраженного сигнала служат основой для измерения дальности до цели, при непрерывном методе радиолокации различают:

    фазовый (фазометрический) метод радиолокации;

    частотный метод радиолокации.

Возможны также комбинированные методы радиолокации, в частности, импульсно-фазовый и импульсно-частотный.

При фазовом методе радиолокации о расстоянии до цели до цели судят по разности фаз излучаемых и принимаемых отраженных колебаний. Первые фазометрические методы измерения расстояния были предложены и разработаны академиками Л.И.Мандельштамом и Н.Д.Папалекси. Эти методы нашли применение в длинноволновых авиационных радионавигационных системах большого радиуса действия.

При частотном методе радиолокации о расстоянии до цели судят по частоте биений между прямым и отраженным сигналами.

Примечание. Изучение этих методов студенты проводят самостоятельно. Литература: Слуцкий В.З. Импульсная техника и основы радиолокации. С. 227-236.

В Ы В О Д

    Определение дальности до объекта при импульсном методе сводится к изменению времени запаздывания t зап отраженного сигнала относительно зондирующего импульса.

    Для однозначности определения дальности до объекта необходимо, чтобы t зап.мах ≤ Т п.

    Разрешающая способность по дальности δД тем лучше, чем меньше длительность зондирующего импульса τ u .

В нашей стране официально зарегистрировано и разрешено к медицинскому применению почти 15 тысяч лекарств и еще несколько тысяч биологически активных добавок к пище. Если же их считать с лекарственными формами, то наберется несколько десятков тысяч. Так что запутаться ничего не стоит. Чтобы вы всегда могли найти ответ на свой запрос, создатели системы РЛС поместили все имеющиеся сведения в базу данных, которая и служит основой для всех справочников системы РЛС. О каждом из них мы подробнее скажем ниже. А сейчас главное понять, что исчерпывающую информацию можно получить, только если пользоваться всей системой , а не отдельной ее частью.

Из чего состоит система РЛС?

Книга, которую вы держите в руках – РЛС-ПАЦИЕНТ, является частью уникальной системы справочников РЛС России. Эта система информации о лекарствах включает в себя четыре ежегодных печатных издания с общим тиражом около 300 000 экземпляров и три электронных справочника (рисунок 2.2.2).

ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ (вверху слева на рисунке 2.2.2) содержит новейшую информацию об отечественных и зарубежных препаратах (включая субстанции, биологически активные добавки к пище, гомеопатические и диагностические средства), заявленных производителями к поставкам. Книга подготовлена ведущими фармакологами страны и рассчитана на врачей, провизоров и других специалистов сферы лекарственного обеспечения. Ежегодное издание, снабженное предметным, фармакологическим, нозологическим на основе Международной классификации болезней десятого пересмотра (МКБ-10) указателями, указателем анатомо-терапевтическо-химической классификации, цветным идентификатором лекарств, указателем производителей лекарственных средств или их представительств в России с адресами офисов и перечнем выпускаемой продукции.

РЛС-АПТЕКАРЬ (вторая сверху книга слева на рисунке 2.2.2) включает все, что зарегистрировано в России. Содержит информацию обо всех лекарственных средствах и биологически активных добавках к пище, зарегистрированных в России, а также о многих изделиях медицинского назначения, санитарно-гигиенических средствах, средствах ухода за больными и о многих других товарах, которые вы можете встретить в аптеках. А это ни много ни мало свыше 50 000 названий. Объединяет все официальные сведения из Государственного реестра лекарственных средств, Федерального реестра биологически активных добавок к пище, Федерального реестра гигиенических заключений. Ежегодное издание. Полная информация для провизора – все существующие формы выпуска, условия хранения, сроки годности, условия отпуска, принадлежность к различным спискам и многое другое. Легкий поиск синонимов и аналогов по действующим веществам и Фармакологическому указателю.

РЛС-ДОКТОР (вверху справа на рисунке 2.2.2) обеспечит неоценимую помощь практикующим врачам при назначении лекарств. Ежегодное издание. Наиболее часто используемые лекарства и их подробные описания. Нозологический указатель, основанный на МКБ-10. Адреса, телефоны производителей.

РЛС-ПАЦИЕНТ – книга о механизмах действия лекарств и обеспечении хорошего самочувствия. Она поможет врачу повысить эффективность общения с пациентом и, как следствие, сделает лечение более продуктивным. Эта книга у вас в руках, и вы можете оценить ее.

Компьютерная версия РЛС-CD: ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ – вся накопленная база данных РЛС для настоящих профессионалов, кто хочет узнавать новости раньше всех и ценит свое время. Ежеквартальное обновление, современный дружелюбный интерфейс, различные варианты поиска, включая контекстный.

РЛС-CD: НОМЕНКЛАТУРА ЛЕКАРСТВЕННЫХ СРЕДСТВ – полный перечень зарегистрированной в России фармацевтической продукции. Включает сочетание 21 признака, описывающего торговую упаковку товара. Единый язык для общения на фармацевтическом рынке, позволяющий внедрить базу данных РЛС в свою информационную среду и обеспечить связь с другими системами, использующими номенклатуру РЛС.