Организация пространства. Советы и идеи. Сад и участок

Как крепить гибкие солнечные панели. Полимерные солнечные батареи

Солнечные электростанции пока не используются повсеместно, на то есть ряд причин, описанных в (откроется в новом окне). Тонкопленочные солнечные батареи в ряду новейших технологий пока не стали модными и не используются повсеместно, т.к. имеют больше недостатков, чем достоинств, но рассмотрим обе стороны.

В чем разница

Принципиальная разница состоит в используемых материалах. Для достижения отличительных параметров тонкопленочных солнечных батарей нужно использовать полупроводники из селенида меди-индия , а также теллурида кадмия . Принцип действия точно такой же, как в поликристаллических и монокристаллических фотоэлементах с той разницей, что наносить указанные полупроводники можно на пленку. Пленка гнется и скручивается в отличие от классических солнечных панелей.

Достоинства

  1. Полупрозрачность. Классические (поликристаллические и монокристаллические) солнечные панели полностью непрозрачные. Аморфные тонкопленочные батареи могут быть выполнены таким образом, чтобы заменить окно в доме, пропуская часть света, а часть преобразовывая в электричество.
  2. Легкость. Батареи выполненные на пленке легче классических в несколько раз, что дает больше свободы в монтаже, упрощает операции с ними.
  3. Гибкость. Тонкопленочные батареи теоретически можно изгибать в любой плоскости без потери работоспособности.
  4. Ударопрочность. Пленка не разбивается от падения при монтаже, от града и остается работоспособной в самых экстремальных условиях.

Недостатки

Мифы и реальность

Пока технология изготовления пленочных солнечных батарей не составляет реальной конкуренции поли/монокристаллическим аналогам. Прежде всего из-за дороговизны используемых материалов. Тем не менее, на ТВ, в сети и среди розничных продавцов бытует несколько мифов о чудо свойствах этой технологии.

Область применения

Как показывает практика, использовать гибкие солнечные панели целесообразно только в походных условиях. Гораздо проще развернуть холст с пленочными солнечными панелями на крыше палатки или трейлера, чем возить с собой жесткую конструкцию, на сборку которой нужно время. Популярны также переносные электростанции для зарядки телефонов и фонарей во время путешествия.

Ввиду низкого КПД сфера применения солнечных батарей очень ограничена. Применение в качестве стационарной солнечной электростанции возможно, но только при наличии больших свободных площадей.

Видео о пленочных батареях

Типичный рекламный сюжет, где диктор рассказывает чудеса о пленочных солнечных батареях, предполагая КПД в 10%, забывая, что таких результатов пока смогли добиться только в лабораторных условиях, но никак не в промышленных образцах. Ролик будет интересен тем, кто хочет знать, как реклама пытается обмануть нас.

Комментарии:

Похожие записи

Power Bank с солнечной батареей - расчет на безграмотность Подбираем аккумулятор для солнечной электростанции

Гибкие солнечные батареи стали настоящей находкой для любителей путешествий и просто для тех, кому нравится быть независимым от традиционных розеток. Конечно, такими элементами дом не осветишь, не отопишь и много энергии получить вообще не удастся. Но надо ли за этим стремиться? Ведь предназначение таких батарей – комфорт для туриста, то есть человека, не имеющего временно постоянного жилья. Следовательно, зарядка ноутбука, мобильного телефона или планшета – это задача портативных солнечных элементов.


Преимущества и недостатки

  • Вес. Этот показатель, бесспорно, является самым основным преимуществом для гибких элементов. Можно сравнивать разные модели, но в основном разница будет видна примерно в 30%, а этого уже достаточно, чтобы говорить о комфорте. К примеру, туристы знают об этом не понаслышке, каждая вещь в рюкзаке или на нем должна иметь максимально меньший вес. В походе каждые 100 грамм стают заметны и чтобы понять это, достаточно пройтись неровной местностью десяток километров. Вопрос соотношения веса к мощности гибкие солнечные батареи решают банально – чем больше вес, тем выше мощность. Например, модель мощностью 3 Вт имеет вес 149 грамм, а модель на 6 Вт – 284 грамма. Заметим ради справедливости, что твердая солнечная батарея на 6 Вт весит 390 грамм.
  • Размер. Здесь гибкие батареи проигрывают своим твердым собратьям. Если брать одинаковую мощность в 6 Вт, то размер гибкого элемента будет около 1,5 квадратных метра, тогда как твердый вариант будет иметь площадь 0,9 квадратных метра. Конечно, неоспоримым преимуществом гибких батарей является их возможность складываться, но это не всегда является таким уж высоким показателем. Особенно, когда речь идет о пешем туризме, где все приходится носить на себе.
  • Эффективность. Точные цифры сложно выяснить. Во-первых, производители часто завышают мощность своего товара, а во-вторых, даже элементы одного производителя и одной партии могут значительно отличаться по мощности.

В среднем можно говорить о таких показателях: КПД твердых батарей составляет примерно 18-20%, тогда как гибкие батареи имеют КПД около 12-15%. Но если составлять пересчет на единицу веса, то гибкие батареи примерно в два раза будут стоять выше.

  • Надежность. Технология производства позволяет особо не переживать за этот показатель. Обычно гибкие элементы вшиты в чехол, который невосприимчив в относительно высоким нагрузкам. Водостойкость гибких батарей тоже высока. Попав под дождь, батареи не покажут проблем в работе после его окончания. Ударостойкость гибких батарей довольно высока, что объясняется легким весом и пружинистостью во время соприкосновения с поверхностью при падении. Если верить отзывам туристов, то даже после падения на камни с высоты около 10 метров, гибкие батареи продолжали работать. Конечно, такие случаи могут носить индивидуальный характер. Достаточно провести аналогию с человеком, когда одному достаточно упасть в комнате и сломать три ребра и ключицу, а кто-то падает со второго этажа и неспешно продолжает идти куда-то. Царапины на поверхности при падении элементов могут оставаться. На общую работу такие царапины не способны повлиять, но при наличии большого их количества мощность может несколько снизиться.
  • Стоимость. Гибкие батареи имеют стоимость выше своих твердых собратьев по причине своей большей компактности. Немного переплатить придется за преимущества гибких батарей и в отдельных случаях за брендовое имя.

На что обращать внимание при покупке и во время эксплуатации

  • При покупке обращать нужно внимание на силу тока. Поскольку чаще всего понадобится заряжать мобильные устройства, то силы тока в 0,5А будет достаточно. Правда, если солнечного света будет много.
  • Крепление панели солнечной гибкой батареи может быть разным. Некоторые панели крепятся присосками, что делает их монтаж к гладим поверхностям очень удобным. Например, на крыше автомобиля или стекла витрины. Все без исключения модели снабжаются небольшими отверстиями в чехлах, чтобы было удобным крепить к рюкзаку.
  • При использовании следует не забывать, что самым оптимальным положением гибкого элемента будет перпендикулярный наклон к солнечным лучам. Также нужно не использовать батарею через стекло – теряется до 35% мощности.
  • КПД для элементов такого типа – аргумент, на котором часто спекулируют недобросовестные продавцы и производители. Последняя швейцарская новинка имеет КПД 17,7%. Так что, если придется услышать уверения продавца о КПД 25%, а то и все 50%, можно смело разворачиваться – вам хотят продать то, что еще не придумано в мире.
  • На сегодняшний день появилось много контор и фирм, которые производят гибкие элементы на заказ. В таких учреждениях можно выбрать подходящую мощность и размер, а также, соответственно, вес батареи.

Гибкие батареи, которые работают от солнечного света, действительно являются очень любопытной и перспективной новинкой. Скорее всего, такие элементы очень скоро заполнят рынок, так как наблюдается общее снижение цен на этот товар. Большие и малые, широкие и узкие, на большую или меньшую мощность – они все потребуют денег при покупке. Дальше они работают совершенно бесплатно и по несколько десятилетий.

Солнечная энергия – один из самых перспективных и стремительно развивающихся альтернативных источников электричества. Это безграничный ресурс, который можно использовать в любой точке планеты, не загрязняя окружающую среду. Согласитесь, неплохо бы было обзавестись собственным альтернативным источником электроэнергии.

Оказывается, теперь солнечную энергию можно преобразовывать в электричество прямо у себя дома. Вместо громоздких и хрупких каркасных панелей теперь все чаще применяют гибкие солнечные батареи. Но как это реализовать на практике?

Мы поможем разобраться с устройством гибких солнечных панелей и принципом их работы. Полезные рекомендации по выбору и монтажу конструкций изложены в нашей статье. А для простоты восприятия информации статья содержит тематические фотографии и видеоролики.

Для того чтобы понять, подходят ли вам гибкие панели для получения электроэнергии, нужно разобраться с теорией.

Что такое солнечная батарея, чем строение гибких моделей отличается от остальных? А так же очень важно еще до покупки выяснить преимущества и недостатки конкретно этого типа солнечных элементов.

Строение и принципы работы гибких панелей

Принцип работы солнечной батареи построен на таком понятии, как фотовольтаика. Свет, как известно, может быть рассмотрен и как волна, и как поток частиц – фотонов. Возможность преобразовывать энергию фотонов в электричество и есть фотовольтаика.

Первые прототипы современных солнечных батарей были изобретены еще в 50-х годах. С тех пор они существенно изменились как внешне, так и по принципу работы. Фотоэлектрический эффект стал возможен благодаря использованию полупроводников

Полупроводник – это материал, который имеет особое строение атома. Полупроводник n-типа имеет лишние электроны, а у атомов полупроводника p-типа их не хватает. Чтобы собрать фотоэлемент, объединяют 2 типа материалов, образуя двуслойную конструкцию.

Галерея изображений

Преимущества гибких солнечных элементов

Преимущества гибких солнечных панелей делают этот метод производства электричества одним из самых перспективных:

  • размер;
  • эластичность;
  • производительность;
  • универсальность;
  • экономичность;
  • экологичность;
  • простота эксплуатации.

Геометрические и физические параметры панелей, такие как размер и вес, имеют большое значение, поскольку для обеспечения электроэнергией целого жилого дома панелей потребуется большое количество, при использовании тяжелых моделей может возникнуть необходимость усиливать конструкцию здания, что значительно увеличит расходы на установку.

Легкие и компактные гибкие элементы не смогут существенно повлиять на распределение нагрузки на каркас здания. Они не несут никакой опасности для покрытия крыши

Производительность кремниевых батарей достаточно высокая. Оценить коэффициент полезного действия в данном случае сложно, панели из полупроводников способны преобразовывать свет в электричество на 20% в среднем.

То есть, если мощность солнечного излучения составит 200 Вт, электроэнергии будет получено около 40 Вт.

Гибкие аморфные солнечные панели гораздо более терпимы к пасмурной погоде, нежели обычные жесткие конструкции на основе кремния.

Для сравнения, стандартная солнечная батарея в пасмурную погоду способна работать только на 10% своей мощности, в то время как гибкая панель выдает около 50% от номинальных значений.

Гибкость солнечной батареи позволяет оборудовать ею крыши с неровной поверхностью, черепичные кровли, покрытия сложной формы. При этом они достаточно универсальны, подходят для установки на крышу или фасад здания

Солнечный свет – ресурс бесплатный и неограниченный. Это его несомненный плюс, в чем и выражается безусловная экономичность солнечных панелей.

Кроме того, такой метод производства энергии полностью экологически чист, никак не отражается на состоянии окружающей среды и не вредит ей. Более того, отказываясь от популярной альтернативы солнечной энергии – тепловых электростанций, человечество снижает уровень загрязнения атмосферы.

Недостатки солнечных батарей гибкого типа

Недостатков у гибких солнечных панелей тоже хватает. Во-первых, эта технология только развивается и еще не достигла пика своих возможностей. По производительности гибкие аморфные батареи уступают жестким поли- или монокристаллическим.

Строение и принцип работы гибких панелей довольно сложный, но пользоваться ими сможет каждый. Достаточно правильно установить и подключить оборудование

Во-вторых, тонкая фольга и минимальный слой напыления относительно быстро выходят из строя. Гарантийный срок эксплуатации таких панелей – около 3 лет.

После этого фотоэлементы начинают постепенно ломаться и требовать замены.

Радует тот факт, что эта отрасль развивается стремительно и уже появляются более долговечные и мощные экземпляры гибких солнечных панелей на основе аморфного кремния

Другие недостатки присущи всем типам солнечных батарей:

  • длительность окупаемости;
  • высокая стоимость;
  • большое количество дорогостоящего оборудования, помимо самих батарей;
  • зависимость от погодных условий.

Гибкая панель мощностью около 150 Вт стоит примерно 40 тыс. руб. или больше, в зависимости от производителя. 20 батарей, набор аккумуляторов и дополнительное оборудование будут стоить круглую сумму. С учетом стоимости 1 кВт часа электроэнергии окупать систему вам придется не один год.

Где и как применяют солнечную энергию?

Гибкие панели применяются в разных сферах. Прежде чем составлять проект энергообеспечения дома при помощи этих солнечных батарей, выясните, где они применяются и каковы особенности их использования в нашем климате.

Область применения солнечных батарей

Применение гибких солнечных батарей очень широкое. Они с успехом используются в электронике, электрификации зданий, автомобиле- и авиастроении, на космических объектах.

В строительстве такие панели используют для обеспечения жилых и промышленных зданий электричеством.

Шаг #3. Уход за системой после установки

После установки гибких солнечных элементов за ними нужно будет постоянно ухаживать и следить, иначе их эффективность может резко снизиться. Главное – содержать панели в чистоте. Пыль, грязь, птичий помет – все эти факторы снижают производительность системы, поскольку ограничивают поглощение солнечного света фотоэлементами.

Солнечные батареи нужно протирать по мере загрязнения. Именно поэтому размещать их в труднодоступных местах на сложной кровле не рекомендуют.

Если ваша система не может обслуживаться вами самостоятельно, всегда можно найти исполнителя с соответствующей техникой и оборудованием. Разумеется, это будет стоит дороже.

Мыть солнечные батареи на основе аморфного кремния, как и жесткие аналоги, можно обычной влажной губкой или тряпкой из микрофибры. Панель не боится воды (все-таки это оборудование устанавливается на улице), если мыть их регулярно, они прослужат дольше

Еще одна проблема, актуальная для наших регионов – снег. В зимнее время батареи засыпаются снегом и перестают функционировать. Осадки нужно постоянно счищать, но не слишком грубо, иначе можно повредить само оборудование.

Выводы и полезное видео по теме

Видеоролики и обзоры, в которых рассматриваются гибкие панели популярных производителей, помогут сделать правильный выбор. Вы сможете увидеть, как будет выглядеть ваш дом после монтажа оборудования, специалисты помогут подобрать нужное количество батарей и рассмотрят правила установки.

Как устроены гибкие солнечные батареи и из чего их изготавливают:

Устанавливать гибкую батарею можно и в квартире на фасаде многоэтажки, почему бы и нет: и подзарядки аккумулятора электромобиля. Все больше людей переходят на альтернативную энергию, потому что за ней – будущее.

Если у вас есть необходимые знания или опыт по теме нашей статьи, пожалуйста, поделитесь им с нашими читателями. А может, вам приходилось самостоятельно устанавливать солнечные батареи? Расскажите, как это делали вы. Свои комментарии можете дополнять фотографиями.

Гибкие тонкопленочные солнечные панели могут стать отличным кровельным материалом на вашей крыше. Для этого тонкую фотопленку просто накладывают на традиционную крышу из черепицы, шифера или металла.
Давайте посмотрим несколько примеров, как это происходит и как это выглядит.


Южная сторона этой крыши покрыта солнечной пленкой, которая дает до 4 кВт электричества.


В Вермонте, США, есть небольшое сообщество Hinesburg, где все 6 домов покрыты такой фотоэлектрической пленкой. Они обеспечивают себя энергией круглый год. Экологические особенности этих домов включают геотермальное отопление, теплые полы и трехслойные стеклопакеты. Окна ориентированы на южную сторону и это помогает прогревать здания зимой.


Три типа солнечных панелей на крыше. Слева направо, коллекторы для подогрева воды, и солнечная пленка интегрированная в кришу

Солнечная пленка не искажает фасад даже старого здания 1930 года постройки. При этом она может окупить себя примерно за 10 лет при ее текущей стоимости. Но из года в год цена на солнечные элементы снижается и становится все доступней.

Эта солнечная крыша на одном из зданий технического университета в штате Миссури. Она простая в установке и в уходе, также на ней легко заметить неисправности и починить.


Солнечная пленка может легка интегрировать в любой дизайн и практически незаметна.


Установка солнечных панелей на металлическую кровлю.


Все соединения прячутся под конёк


Крыша может также стать системой отопления для дома, подогрева воды и пола. Для этого сначала на крышу монтируются вакуумные трубки, которые подсоединены к системе отопления дома, а сверху на них ложатся солнечные панели, которые будут собирать солнечное тепло.


Тонкопленочные гибкие солнечные фотоэлектрические панели.


Если у вас металлическая крыша, то все что вам остается, это почистить ее и наклеить панели. Говорят компания Unisolar, которая делала такие гибкие панели закрылась, а жаль, идея очень интересная.


Монтаж солнечных панелей вместе с металлочерепицей


Намного эффективней, когда солнечные панели интегрированы в кровле еще на заводе. Как это сделано в компании www.ustile.com, тогда и качество сборки лучше и эффективность панелей и надежность всей конструкции.


Солнечная система Panotron.
Малые фотоэлектрические панели вставляются в глиняную черепицу. Монтаж солнечной плитки производится одновременно с кладкой черепицы. Солнечные панели состоят из отдельных монокристаллических элементов, соединенных последовательно. 4 отдельные панели с номинальной мощностью 6,25 Wp вместе образуют фотоэлектрический модуль. Мощность такого модуля 25 Wp; 1 м2 поверхности имеет выходную мощность 75 WP. www.panotron.com

Солнечная черепица.

Установлена на одном уровне с битумной черепицей. Для крепления достоточно просверлить только одно отверствие.


Солнечная черепица накладывается одна на другую и провода идут по низу через просверленные отверствия, связывая кажду из них. Дальше они поступают на мансарду, где соединены с общей системой.


Солнечная черепица не обязательно должна идти сверху вниз. Вот вариант, когда она выложена в виде чешуи.


Немецкие разработчики создали здание которое полностью покрыто солнечными панелями. 40 монокристаллических кремниевых панелей на крыше и около 250 тонких пленок меди индия галлия диселенида (CIGS) панелей по бокам вырабатывают до 200% электричества, необходимого для дома. Однажды во время теста сгенерировал 19 кВт енергии. solardecathlon.gov


Интегрированные солнечные панели могут выдерживать даже сильные ветры.


Солнечная плитка бескаркасная и может быть установлена на любой кровле, а также может быть вкраплена между плиткой такого же размера, но с различной функциональностью: тепловыми коллекторами и мансардными окнами, а также стандартной черепицей.
pvsystems.meyerburger.com


Фрайбург - солнечный , проблеск будущего.
Солнечная деревня Sonnenschiff, Фрайбург, Германия, была построена архитектором Рольфом Дишем. Все 58 домов производят больше энергии, чем они потребляют. В общем они генерируют 420000 кВтч солнечной энергии от общей, около 445 кВт в год. Здесь нет частных автомобилей, но зато хорошо организована система Car-Sharing. www.rolfdisch.de

В мире есть достаточно много компаний, которые создают разные типы встроенных солнечных панелей и солнечной пленки. И с каждым днем их ассортимент становится все разнообразней, и продуктивность их все выше, а цена доступней.


И хотя многие из производителей гибких пленочных солнечных панелей не имеют представительства в нашей стране, вы можете найти и заказать их на Ebay.

Гибкие солнечные панели из специфических отраслей (аэрокосмической, энергетической и пр.) все больше продвигаются в бытовую сферу. Они встречаются в рекламных сооружениях, элементах архитектуры, да и мобильные (складные) источники энергии уже никого не удивляют.

Конструктивные особенности панели

Гибкой солнечной панелью называют тонкопленочное изделие, которое состоит из тонкой подложки с напыленным на нее слоем полупроводника. Общая толщина составляет всего 1 мкм (0,001 мм). Однако такие маленькие размеры не мешают гибкой панели иметь высокий КПД: он лишь немного уступает данному параметру кристаллических солнечных элементов.

Структура гибкой панели

Первые гибкие солнечные панели производились только на основе кремния (аморфного). В современных моделях применяют теллуриды и сульфиды кадмия, диселениды (медно-галлиевые и медно-индиевые) и некоторые полимеры.

Повышения КПД панелей производители добиваются за счет многокаскадных полупроводниковых структур. В них солнечный свет отражается многократно, что весьма положительно сказывается на энергоэффективности данной панели.

Данные технологии позволяют получить тонкий, легкий модуль, обладающий высокой прочностью и износостойкостью. Гибкие панели можно складывать, сворачивать в трубочку. Изделия требуют определенной бережности в обращении, однако прекрасно выдерживают походные условия.

Область применения

Наиболее широко тонкопленочные элементы применяются на гелиостанциях. Они прекрасно зарекомендовали в разных климатических зонах (даже в местах, где преобладает пасмурная погода).

Солнечные панели не могли не заинтересовать специалистов космической отрасли. Сейчас в России ведутся работы по созданию тонкопленочных фотопанелей для космических станций. Они лучше переносят радиационное излучение, а их производство обходится дешевле кристаллических аналогов.

Мобильные панели

Применяют солнечные панели службы медицины, МЧС, поисковики и пожарные.

Великим благом новая разработка стала для научных экспедиций: с такими источниками энергии стало возможным создавать нужный температурный режим для хранения различных компонентов, необходимых для проведения лабораторных испытаний в полевых условиях. Освещение, зарядка ноутбука, мобильного телефона – все это можно организовать без труда при помощи. А если учесть, что в продаже имеются достаточно мощные – до 3 кВт – так называемые солнечные навесы, то и работу научно-исследовательского оборудования можно легко обеспечить.

Полюбили портативные солнечные батареи и туристы: и их помощью они могут в походе зарядить фотоаппараты, видеокамеры, мобильные телефоны и GPS-трекеры. Особый интерес у любителей путешествовать вызывает модуль для рюкзака. Он исправно заряжает всю необходимую аппаратуру во время марш-броска.

Смотрим видео, туристическая гибридная модель:

Вышеперечисленные способы применения – это только малая часть обширного списка сфер, в которых данная продукция применяется все чаще. Это и судоходство, и кинематография, военные и полицейские службы и т.д.

Преимущества и недостатки

Им присущ ряд неоспоримых преимуществ:

  • Небольшой вес: это очень важное преимущество для туристов, так как тащить рюкзак им приходится на собственной спине. При длительных переходах даже лишние 100 граммов веса кажутся неподъемными. 6-ваттная пленочная модель весит всего 284 грамма – а это на 106 граммов легче кристаллической солнечной батареи такого же номинала;
  • Надежность: производители гибких панелей предусмотрели особенности их эксплуатации, поэтому предприняли ряд мер, защищающих изделие от механических повреждений, воздействия влаги. Основная масса моделей обеспечена чехлами, способными стойко переносить высокие нагрузки. Небольшой вес панелей позволяет им без особых повреждений переносить падение с высоты. По свидетельству туристов, панель, упавшая на камни с десятиметровой высоты, остается работоспособной.
  • Эффективность: вопрос, что эффективнее – гибкие или твердые модули, непростой. Ведь КПД кристаллических батарей составляют от 18 до 20%, а пленочных – 12-15%. На первый взгляд, гибкие панели проигрывают. Но если пересчитать КПД на единицу веса, однозначно пленочные модули окажутся в выигрыше.

К недостаткам можно отнести следующее:

  • Размер: если сравнить два модуля – гибкий и твердый – одинаковой мощности, то, несомненно, первые проиграют. Площадь пленочной батареи мощностью 6 Вт составляет 1,5 кв. м, а кристаллического – 0,9 кв. м. Хотя проигрыш этот спорный – ведь гибкую панель можно свернуть, и тогда она займет места, по крайней мере, не больше кристаллической;
  • Цена: стоят тонкопленочные модули больше жестких, что вполне естественно – чем изделие удобнее в пользовании, тем оно дороже. Впрочем, здесь играет немаловажную роль и понятие «новинки». Со временем и гибкие модули станут вполне доступными для любого желающего их приобрести (как это случилось, к примеру, с мобильными телефонами).

Покупателю на заметку

На что смотреть при выборе

На рынке солнечных батарей гибкие панели уже представлены довольно широко. Каждая модель имеет свои особенности, и при выборе надо следует учитывать:

  • Обратите внимание на силу тока: для зарядки мобильных устройств в солнечную погоду достаточно 0,5 А;
  • Некоторые модели оснащены присосками для крепления к поверхности. Если вы хотите прикрепить модуль к крыше авто, ищите такой вариант. Для крепления на рюкзак подойдет любая модель, так во всех чехлах предусмотрены для этого небольшие отверстия;
  • Если вам продавец «гарантирует» КПД 25% - уходите: вам пытаются продать продукцию неизвестного происхождения. Последняя модель от известного производителя из Швейцарии имеет коэффициент полезного действия, равный 17,7%. Выше них пока еще никто не «прыгнул».

Гибридная панель

Большой интерес вызывает еще один вид солнечных модулей – гибридные солнечные панели. Они способны одновременно вырабатывать два вида энергии:

  1. Электрическую;
  2. Тепловую.

Гибридная солнечная панель представляет собой симбиоз теплового коллектора и фотоэлектрической панели. Ее краткое название – PVT-панель. Такая комбинация позволяет сократить в два раза установочную площадь при одновременном использовании фотоэлектрических модулей и солнечных коллекторов на одном здании.

Смотрим видео, гибридной модели:

Конструкция гибридной солнечной панели имеет неоспоримое преимущество – возможность отбора избыточного тепла от фотоэлемента за счет теплоносителя, который используется в тепловой части модуля. А ведь именно повышение температуры фотоэлемента приводит к снижению эффективности выработки электрической энергии.

Однако, практика пока не позволяет подтвердить радужные теоретические выводы. Поэтому пока наиболее целесообразно использовать гибридные модули в качестве низкопотенциального источника энергии: например, он может играть роль источника тепла для теплового насоса, накопления тепла скважины в летний период или подогрева воды в бассейне.

Несмотря на ряд недостатков гибких и гибридных солнечных панелей, будущее, несомненно, за ними. По мере усовершенствования и снижения цены, они будут все больше вытеснять кристаллические модели и из промышленной сферы, и из бытовой.