Организация пространства. Советы и идеи. Сад и участок

Зарядное устройство для фонарика схема. Электрические схемы фонариков

В эксплуатации у населения находится достаточно много светодиодных аккумуляторных фонарей со встроенными зарядными устройствами (ЗУ), которые часто выходят из строя. В настоящей статье авторы делятся своим опытом ремонта светодиодных фонарей ФО-ДИК АН-0-005 и Космос А618LX.

Светодиодный фонарь ФО-ДИК АН-0-005 (фото 1 ) российского производства содержит пять светодиодов, аккумулятор на рабочее напряжение 4…4,5 В и встроенное сетевое зарядное устройство (ЗУ).

Принципиальная схема зарядного устройства фонаря ФО-ДИК АН-0-005 показана на рис.1 .

После непродолжительной эксплуатации фонарь перестал функционировать. При разборке устройства было обнаружено, что дорожки на миниатюрной печатной плате фонаря полностью выгорели, а высоковольтный диод VD2 (рис.1 ) вышел из строя. К сожалению, позиционные номера деталей на плате не указаны. Поэтому авторы, создавая схему рис.1 , указали эти номера на ней произвольно.

  • высоковольтные диоды VD1, VD2 типа 1N4007 можно заменить КД105Б, В, Г или КД209Б, В; КД226В, Г, Д;
  • высоковольтный конденсатор С1 номиналом 0,68…1,5 мкФ х 400…630 В;
  • резисторы, типа МЛТ-0,25, R1 номиналом 560…620 кОм, R2 — 220…330 Ом;
  • светодиод HL1 любой миниатюрный.

При подключении к сети 220 В напряжение на аккумуляторе должно быть 4,5…5 В, а светодиод НL1 должен светиться.

На рис.2 показана схема зарядного устройства фонаря «Космос А618LX», в котором вышли из строя сверхъяркие светодиоды. Как видно из рис.2 , схема этого фонаря отличается от схемы рис.1 только двухполупериодным выпрямителем на диодах VD1-VD4. Номиналы элементов аналогичны рис.1 .

Проанализировав обе схемы, можно сделать вывод, что если по какой-то причине вышел из строя аккумулятор фонаря или отпаялись его электроды, то при включении заряжаемого фонаря сетевое напряжение 220 В выведет из строя все сверхъяркие светодиоды фонаря. По этой причине при зарядке фонарей не рекомендуется включать (проверять) заряжаемый фонарь.

В настоящее время весьма частыми стали отключения электроэнергии, поэтому в радиолюбительской литературе достаточно много внимания уделяется локальным источникам питания. Не очень энергоемким, но весьма полезным при аварийных отключениях является компактный аккумуляторный фонарик (АКФ), в аккумуляторной батарее (АКБ) которого применены три герметичных дисковых никель-кадмиевых аккумулятора Д 0,25. Выход из строя АКФ по тем или иным причинам доставляет немалое огорчение. Однако если приложить немного смекалки, разобраться в конструкции самого фонарика и знать элементарную электротехнику, то его можно отремонтировать, и маленький друг еще достаточно долго и надежно послужит.

Схемотехника. Конструкция

Начнем, как положено, с изучения руководства по эксплуатации 2.424.005 Р3 Фонарь аккумуляторный "Электроника В6-05". Несоответствия начинаются сразу после внимательного сравнения схемы электрической принципиальной (рис.1) и конструкции фонарика. В схеме плюс - от АКБ, а минус подключается на лампочку НL1.

Реально коаксиальный вывод НL1 постоянно соединен с плюсом АКБ, а минус подключается через S1 к резьбовому цоколю. Внимательно осмотрев монтажные соединения, сразу заметим, что НL1 присоединена не по схеме, конденсатор С1 соединен не с VD1 и VD2, как показано на рис.1, а с упругим контактом конструкции, прижимающим минус АКБ, что конструктивно и технологически удобно, поскольку С1, как самый габаритный элемент, достаточно жестко смонтирован с элементами конструкции - одним из штырей сетевой вилки, конструктивно объединенной с корпусом АКФ и пружинным контактом АКБ; резистор R2 соединен не последовательно с конденсатором С1, а припаян одним концом ко второму штырю сетевой вилки, а вторым - к держателю.U1. Это также не учтено и в схеме АКФ в . Остальные соединения соответствуют схеме, изображенной на рис.2.

Но если не учитывать конструктивные и технологические плюсы, которые вполне очевидны, то в принципе не имеет значения, как подключен С1, по рис.1 или рис.2. Кстати, при хорошей идее доработки схемы зарядного устройства (ЗУ) АКФ не удалось избежать применения "лишних" элементов.

Схему ЗУ при сохранении общего алгоритма можно существенно упростить, собрав ее согласно рис.3.


Разница заключается в том, что элементы VD1 и VD2 на схеме по рис. 3 выполняют по две функции, что позволило уменьшить количество элементов. Стабилитрон VD1 для отрицательной полуволны питающего напряжения на VD1, VD2 служит выпрямительным диодом, он же является и источником положительного опорного напряжения для схемы сравнения (СС), функцию (вторую) которой выполняет также VD2. CC работает следующим образом: когда величина ЭДС на ка тоде VD2 меньше, чем напряжение на его аноде, идет нормальный процесс заряда АКБ. По мере заряда значение ЭДС на АКБ увеличивается, и когда оно достигнет напряжения на аноде, VD2 закроется, и заряд прекратится. Величина опорного напряжения VD1 (напряжение стабилизации) должна равняться сумме падения напряжения в прямом направлении на VD2 + падение напряжения на R3VD3 + ЭДС АКБ и подбирается под конкретный ток заряда и конкретные элементы. ЭДС полностью заряженного диска 1,35 В .

При такой схеме заряда светодиод как индикатор состояния заряженности АКБ в начале процесса горит ярко, по мере заряда его яркость уменьшается, а при достижении полного заряда он гаснет. Если в процессе эксплуатации замечено, что произведение тока заряда на время свечения VD3 в часах значительно меньше величины его теоретической емкости, то это говорит не о том, что компаратор на VD2 неправильно работает, а о том, что один или несколько дисков имеют недостаточную емкость.

Условия эксплуатации

Теперь проанализируем заряд и разряд АКБ. По ТУ (12МО.081.045) время заряда полностью разряженной АКБ при напряжении 220 В - 20 ч. Зарядный ток при С1=0,5 мкФ с учетом разброса по емкости и колебаний величины питающего напряжения около 25-28 мА, что соответствует рекомендациям , причем рекомендуемый ток разряда в два раза больше тока заряда, т.е. 50

мА. Количество полных циклов заряд-разряд 392. В реальной конструкции АКФ разряд осуществляется на штатную лампочку 3,5 В х 0,15 А (при трех дисках), хотя и дает повышение яркости, однако также по причине увеличения тока от АКБ сверх рекомендованного по ТУ, отрицательно сказывается на сроке службы АКБ, поэтому такая замена вряд ли целесообразна, так как в отдельных экземплярах дисков это может вызвать усиленное газообразование, что в свою очередь, приведет к увеличению давления внутри корпуса и к ухудшению внутреннего контакта, осуществляемого тарельчатой пружиной между таблеточным пакетом активного вещества и минусовой частью корпуса. Это же приводит к выделению через уплотнение электролита, вызывающего коррозию и связанное с ней ухудшение контакта как между самими дисками, так и между дисками и металлическими элементами конструкции АКФ.

Помимо всего, из-за негерметичности из электролита испаряется вода, в результате чего увеличивается внутреннее сопротивление диска и всей АКБ. При дальнейшей эксплуатации такого диска он выходит из строя окончательно в результате превращения электролита частично в кристаллическое КОН, частично - в поташ К2СО3. Именно по этим причинам вопросам заряда - разряда необходимо уделить особое внимание.

Практический ремонт

Итак, один из трех аккумуляторов "забарахлил". Оценить его состояние можно авометром. Для чего (в соответствующей полярности) кратковременно замыкают каждый диск щупами авометра, установленного на измерение постоянного тока в пределах 2-2,5 А.

У хороших, свежезаряженных дисков ток КЗ должен находиться в пределах 2-3 А. При ремонте АКФ могут возникнуть два логических варианта: 1) нет запасных дисков; 2) есть запасные диски.

В первом случае самым простым будет такое решение. Вместо третьего, негодного диска устанавливают шайбу из медного корпуса негодного транзистора типа КТ802, который к тому же по габаритам хорошо вписывается в большинство конструкций АКФ. Для изготовления шайбы удаляют выводы электродов транзистора и зачищают оба торца мелким напильником от покрытия до появления меди, затем их шлифуют на мелкозернистой шлифовальной бумаге, уложенной на ровную плоскость, после чего полируют до блеска на куске войлока с нанесенным слоем пасты ГОИ. Все эти операции необходимы для уменьшения влияния переходного сопротивления на время горения. То же относится и к контактным торцам дисков, потемневшие поверхности которых в процессе эксплуатации желательно по тем же причинам перешлифовать.

Поскольку удаление одного диска приведет к уменьшению яркости свечения HL1, то в АКФ устанавливают лампочку 2,5 В на 0,15 А или, что еще лучше, лампочку 2,5 В на 0,068 А, которая хоть и имеет меньшую мощность, однако уменьшение тока разряда позволяет приблизить его к рекомендуемому по ТУ, что благоприятно скажется на сроке эксплуатации дисков АКБ. Практическая разборка и анализ исправимых причин выхода из строя дисков показал, что достаточно часто причиной неработоспособности является разрушение тарельчатой пружины. Поэтому не спешите выбрасывать негодный диск и, если повезет, его можно заставить еще поработать. Эта операция потребует достаточной аккуратности и определенных слесарных навыков.

Для ее проведения потребуются маленькие слесарные тиски, шарик от шарикоподшипника с диаметром около 10 мм и гладкая стальная пластина толщиной 3-4 мм. Пластину через прокладку из электрокартона толщиной 1мм подкладывают между губками и плюсовой частью корпуса, а шарик располагают между второй губкой и минусовой частью корпуса, ориентируя шарик примерно по ее центру. Прокладку из электрокартона предназначена для устранения короткого замыкания диска, а пластинка - для равномерного распределения усилия и исключения деформации положительной части корпуса АКБ от насечки на губках тисков. Их размеры очевидны. Постепенно зажимают тиски. Вдавив шарик на 1-2 мм, извлекают диск из приспособления и контролируют ток КЗ. Обычно после одного-двух прижимов больше половины заряженных дисков начинают показывать увеличение тока КЗ вплоть до 2-2,5 А. После некоторой величины хода усилие прижима резко возрастает, что означает упор деформируемой части корпуса в таблетку. Дальнейший прижим нецелесообразен, поскольку приводит к разрушению АКБ. Если после упора ток КЗ не увеличивается, то диск окончательно непригоден.

Во втором случае простая замена диска на другой может также не принести желаемого результата, поскольку у вполне работоспособных дисков имеется так называемая "емкостная" память.

В связи с тем что при работе в составе батареи всегда имеется хотя бы один диск, у которого меньше значения емкости, отчего при его разряде резко возрастает внутреннее сопротивление, что ограничивает возможность полного разряда остальных дисков. Подвергать такую АКБ некоторому перезаряду для устранения этого явления нецелесообразно, поскольку это не приведет к увеличению емкости, а только к выходу из строя наиболее хороших дисков. Поэтому при замене хотя бы одного диска в АКБ их все желательно подвергнуть принудительной тренировке (дать один полный цикл заряд-разряд) для устранения вышеуказанных явлений. Заряд каждого диска проводят в том же АКФ, применив вместо двух дисков шайбы из транзисторов.

Разряд проводят на резисторе сопротивлением 50 Ом, обеспечивающем ток разряда 25 мА (что соответствует ТУ), до достижения напряжения на нем 1 В. После этого диски составляют в батарею и заряжают совместно. Зарядив всю АКБ, разряжают ее на штатную HL до достижения на АКБ 3 В. Под нагрузкой той же HL еще раз проверяют ток КЗ каждого диска, разряженного до 1 В.

У дисков, пригодных для работы в составе АКБ, ток КЗ каждого диска должен быть примерно одинаковым. Емкость АКБ можно считать достаточной для практического пользования, если время разряда до 3 В составляет 30-40 мин.

Детали

Предохранитель.U1. Наблюдая при проведении ремонтов за эволюцией схемотехники АКФ около двух десятилетий, замечено, что в середине 80-х годов некоторые предприятия начали выпускать АКБ без плавких предохранителей с токоограничительным резистором 0,5 Вт и сопротивлением 150-180 Ом, что вполне оправдано, поскольку при пробое С1 роль.U1 играл R2 (рис. 1) или R2 (рис. 2 и 3), проводящий слой которого испарялся гораздо раньше (чем сгорал.U1 на 0,15 А), прерывая цепь, что и требуется от предохранителя. Практика подтверждает, что если токоограничительный резистор мощностью 0,5 Вт в реальной схеме АКФ ощутимо греется, то это однозначно свидетельствует о значительной утечке С1, (которую затруднительно определить авометром, а также в связи с изменением ее величины во времени), и его необходимо заменить.

Конденсатор С1 типа МБМ 0,5 мкФ на 250 В является самым ненадежным элементом. Он рассчитан на применение в цепях постоянного тока с соответствующим напряжением, а применение таких конденсаторов в сетях переменного тока, когда амплитуда напряжения в сети может достигать 350 В, и если учитывать наличие в сети многочисленных пиков от индуктивных нагрузок, а также время зарядки полностью разряженного АКФ по ТУ (около 20 ч), то надежность его как радиоэлемента становится весьма малой. Наиболее надежным конденсатором, который имеет оптимальные габариты, позволяющие вписать его в различные по конструктивным размерам АКФ, является конденсатор К42У-2 0,22 мкФ Ч 630 В или даже К42У 0,1 мкФ Ч 630 В. Уменьшение зарядного тока примерно до 15-18 мА, при 0,22 мкФ и до 8-10 мА при 0,1 мкФ практически вызывает лишь увеличение времени его заряда, что несущественно.

Светодиодный индикатор зарядного тока VD3. В АКФ, которые не имеет светодиодного индикатора тока заряда, его можно установить, включив его в разрыв цепи в точке А (рис. 2).

Светодиод включен параллельно измерительному резистору R3 (рис. 4), который при новом изготовлении или уменьшении С1 необходимо подобрать. При емкости С1, равной 0,22 мкФ, вместо 0,5 мкФ, яркость VD3 уменьшится, а при 0,1 мкФ VD3 может вообще не засветиться. Поэтому учитывая вышеуказанные токи заряда, в первом случае резистор R3 надо пропорционально уменьшению тока увеличить, а во втором - удалить совсем. Практически с учетом того, что работать с 220 В весьма небезопасно, сопротивление R3 лучше подобрать, подключив через миллиамперметр к точке B (рис. 3) регулируемый источник постоянного тока (РИПТ), и контролируя ток заряда. Вместо R3 временно подсоединяют потенциометр сопротивлением 1 кОм, включенный реостатом на минимум сопротивления. Увеличивая напряжение РИПТ, устанавливают ток заряда АКБ, равный 25 мА.

Не изменяя установленного напряжения РИПТ, включают миллиамперметр в разрыв цепи VD3 в точке С и, постепенно увеличивая сопротивление потенциометра, добиваются тока через него 10 мА, т.е. половину от максимального для АЛ307 . Этот момент особенно важен для схем без стабилитрона, в которых в первый момент после включения при зарядке С1 ток через VD3 может стать большим, несмотря на наличие токоограничительного резистора R1, и может привести к выходу VD3 из строя. В установившемся режиме R1 практически не влияет на ток заряда в связи со его малым сопротивлением по сравнению с реактивным (около 9 кОм) сопротивлением С1. При доработке VD3 устанавливают в отверстие диаметром 5 мм, просверленное симметрично линии разъема в корпусе между опорами пружинного контакта, подсоединенного к коаксиальному выводу HL1, и плюсом АКБ. Измерительный резистор размещают там же.

Выпрямительные диоды

Учитывая наличие рывка тока при начальном заряде С1, для повышения надежности в выпрямителе АКФ желательно использовать любые кремниевые импульсные диоды с обратным напряжением от 30 В.

Нестандартное применение АКФ

Изготовив из цоколя негодной лампочки и разъема питания радиоприемника переходник, АКФ можно использовать не только как источник света, но и как источник вторичного электропитания с напряжением 3,75 В. При среднем уровне громкости (ток потребления 20-25 мА) его емкости вполне достаточно для прослушивания ВЭФ в течение нескольких часов.

В отдельных случаях при отсутствии электроэнергии АКФ можно подзаряжать и от радиотрансляционной линии. Владельцы АКФ со светодиодным индикатором могут наблюдать процесс динамического мигания светодиода. Особенно ровно VD3 горит от "тяжелого" рока, поэтому если не любо слушать - заряжай АКФ, используй энергию в мирных целях. Физический смысл данного явления заключается в уменьшении реактивного сопротивления с ростом частоты, поэтому при значительно меньшем напряжении (15-30 В) импульсного значения тока заряда через индикатор достаточно для его свечения и, естественно, подзаряда.

Литература:

  1. Вузецкий В.Н. Зарядное устройство для аккумуляторного фонарика// Радіоаматор.- 1997.- №10.- С.24.
  2. Терещук Р.М. и др. Полупроводниковые приемно-усилительные устройства: Справ. радиолюбителя.- Киев: Наук. думка, 1988

В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.

И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.

А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.

Простейшие фонари

Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности. Схема подобного прибора элементарна.

По сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:

  • Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
  • Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
  • Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
  • Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.

Фонарик на светодиодах

Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.

Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.

Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.

Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.


При желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.

Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы. Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.

Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.

Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.

Доработка китайских фонариков

Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.

Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.

Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.

Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.

Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.

Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.


Как видно из схемы, эта проблема вполне решаема.

А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.

Налобный светодиодный фонарь

В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.

Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.

Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.

К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.


Режимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.

Так какой же фонарь выбрать?

Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.

Посвящается всем тем, кто имеет аналогичные светодиодные фонари.
Типовая проблема последних - свинцовый (AGM) аккумулятор на 4 Вольта, который «неожиданно» перестает работать.
Недавно был обзор с решением аналогичной проблемы. .
Я пошел немного по другому пути, позже будет понятно почему.

Сначала немного о фонарях:


Бюджетные фонари имеющие приличные размеры и посредственные характеристики. Но их продолжают покупать и использовать. Фонарь содержит в себе множество сверхъярких светодиодов 3-5мм.




Включены светодиоды как правило параллельно, через токоограничивающие резисторы.


Сердцем фонаря является свинцовая (AGM) аккумуляторная батарея емкостью до 4.5Ач.


Положительным моментом можно считать неприхотливость аккумулятора. Возможность подзарядки в любое время и работа при отрицательных температурах. Последний момент в моей переделке не учитывается, поскольку эксплуатация фонаря при значительной отрицательной температуре не планируется.

Забегая вперед скажу, что времени на переделку фонаря потребовалось около 2х часов.

Вскрываем фонарь и извлекаем дохлую батарею:

Для начала произвел замер потребляемого тока при напряжении на батарее 3.84 В:




Последовательно светодиодам установлены резисторы для ограничения тока. Из за изменившегося напряжения фонаря можно было бы понизить сопротивления резисторов, но делать этого я не стал. Яркость упала незначительно, с этим можно смириться, да и хлопотно это по времени.
При напряжении 4.2В ток превышал 1 А. Это стало отправной точкой при решении проблемы. Использование кит набора дешевого повербанка отпадает из за неспособности последнего выдать необходимый ток.

Решение было на поверхности:
Два варианта плат, одна с защитой от переразряда, другая без защиты:


Немного о платах. Контроллер один из самых распространенных TP4056. Я использовал аналогичную плату . Документация на контроллер . Контроллер обеспечивает ток заряда до 1 Ампера, поэтому можно примерно рассчитать время заряда аккумуляторов.
Какую плату использовать в вашем фонаре зависит от типа применяемых элементов 18650. Если есть защита от переразряда, тогда ту что справа. Иначе можно возложить функцию защиты аккумулятора на плату с коей она замечательно справляется. Платы отличаются между собой наличием дополнительных деталей, таких как контроллер разряда DW01 и силовой ключ 8205(сдвоенный полевой транзистор) для отключения в нужный момент аккумулятора от нагрузки или защиты от перезаряда.

Места внутри много, можно установить хоть десяток аккумуляторов, но я для пробы обошелся одним.


Последний был извлечен из старой батареи ноутбука и протестирован на зарядном устройстве IMAX B6:




При токе разряда 1 Ампер, остаточная емкость 1400 мАч. Этого хватит примерно на час- полтора непрерывной работы фонаря.

Пробуем подключить аккумулятор к плате:




Провода к аккумулятору паять надо аккуратно, не перегревая последний. Если не уверены, то можно использовать холдер для аккумулятора.


Так же желательно соблюдать цветовую дифференциацию штанов использовать провода разного цвета для подключения питания.

Подключаем плату через кабель micro USB к блоку питания:




Загорелся красный светодиод, заряд пошел.

Теперь надо установить плату- контроллер заряда в фонарь. Специальных креплений не предусмотрено, поэтому делаем колхоз используя любимый всеми суперклей.


Склеить хоть раз пальцы святая обязанность каждого, кто пользовался .

Изготавливаем кронштейн из подходящей металлической пластинки (подойдет элемент из детского металлического конструктора).


Для того, что бы избежать замыкания используем изоляционный материал. Я применил кусочек термоусадочной трубки.

Закрепил плату предварительно подключив провода что шли ранее к свинцовому АКБ:




Снаружи выглядит так:


Видны мелкие дефекты по бокам от разъема. Исправляются следующим образом: ямка или щель засыпается пищевой содой и потом 1-2 капли суперклея. Клей схватывается мгновенно. Через 30 секунд можно надфилем обработать поверхность.
Аккумулятор внутри закрепляем любым доступным способом. Я применил герметик, кому то удобнее клеевой пистолет.
Отверстие разъема подзарядки будет позже закрыто резиновым колпачком.

Собираем и включаем:


Работает.
Upd: Если планируется подключение нескольких аккумуляторов параллельно, то перед соединением, во избежание порчи последних необходимо привести все аккумуляторы к единому ЭДС (по простому напряжение).

Выводы: Расходы по деньгам примерно 100 рублей и 2 часа времени. Аккумулятор в расчет не беру, использовал полудохлый с большим внутренним сопротивлением. Получаю рабочий фонарь. Описываемые мной процедуры не панацея, существуют и другие варианты доработки фонарей. Индикацию процесса зарядки/готовности выводить на корпус не стал. Свечение светодиодов синий/красный видно сквозь корпус.
Плата кстати может иметь любой разъем какой вам понравится mini или micro USB. Все зависит от наличия нужных кабелей. Кроме всего прочего у нас на руках остается блок питания для зарядки свинцового аккумулятора - можно будет с пользой пристроить куда нибудь.

Плюсы:
Рабочий фонарь, меньший вес (хотя это малозначительный факт). заряжать можно в любом доступном месте при наличии USB зарядки или компьютера.
Минусы:
Аккумулятор боится мороза, меньшая яркость (примерно на 10-15%) по отношению к заводскому варианту. В конце разряда яркость падает, заметно на глаз. Для решения этой проблемы можно поставить более емкий (или несколько) аккумулятор.


Нажать Класс

Рассказать ВК


Электрический фонарик относится как бы к дополнительному вспомогательному инструменту для проведения каких либо работ при наличии плохого освещения либо отсутствия освещения вообще. Каждый из нас выбирает тип фонарика по своему усмотрению:

  • налобный фонарик;
  • карманный фонарик;
  • фонарик на ручном генераторе

Схема простого фонарика

Электрическая схема простого фонарика \рис.1\ состоит из:

  • батареи элементов;
  • лампочки;
  • ключа \выключателя\.

Схема в своем исполнении простая и разъяснений на этот счет не требует. Причинами неисправности фонарика при такой схеме могут быть:

  • окисление контактных соединений с батарейками;
  • окисление контактов патрона лампочки;
  • окисление контактов самой лампочки;
  • неисправность ключа \выключателя света\;
  • неисправность самой лампочки \перегорела лампочка\;
  • отсутствие контактного соединения с проводом;
  • отсутствие питания батареек.

Другими причинами неисправности могут быть какие либо механические повреждения корпуса фонарика.

Схема аккумуляторного фонарика на светодиодах

фонарик налобный со светодиодами BL — 050 — 7C

Фонарик BL — 050 — 7C поступает в продажу со встроенным зарядным устройством, при подключении такого фонарика к внешнему источнику переменного напряжения — осуществляется подзарядка аккумуляторной батареи.

Аккумуляторные батарейки, а точнее электрохимические аккумуляторы,- принцип зарядки таких элементов основан на использовании обратимых электрохимических систем. Вещества, образовавшиеся в процессе разряда аккумулятора, под воздействием электрического тока — способны восстанавливать свое первоначальное состояние. То есть подзарядили фонарик и можем дальше им пользоваться. Такие электрохимические аккумуляторы или отдельные элементы, могут состоять из определенного количества, — в зависимости от потребляемого напряжения:

  • количества лампочек;
  • типа лампочек.

Количество, комплект таких отдельных элементов фонарика, — представляют из себя батарею.

Электрическую схему фонарика \рис.2\ можно рассматривать как состоящей из простой лампочки накаливания так и из определенного количества светодиодных лампочек. Для любой схемы фонарика что именно важно? — Важно то, чтобы потребляемая энергия лампочками состоящими в электрической цепи — соответствовала выдаваемому напряжению источника питания \батареи, состоящей из отдельных элементов\.

Читаем схему соединений:

Резистор R1 сопротивлением — 510 кОм и номинальным значением мощности — 0,25 Вт в электрической цепи соединен параллельно, за счет данного большого сопротивления, напряжение на дальнейшем участке электрической цепи значительно теряется, а точнее, часть электрической энергии преобразовывается в тепловую энергию.

С резистора R2 \сопротивлением 300 Ом и номинальным значением мощности — 1 Вт\ ток поступает на светодиод VD2. Данный светодиод служит индикаторной лампочкой, показывающей подключение зарядного устройства фонарика к внешнему источнику переменного напряжения.

На анод диода VD1 ток поступает от конденсатора C1. Конденсатор в электрической цепи является сглаживающим фильтром, часть электрической энергии теряется при положительном полупериоде синусоидального напряжения, так как при данном полупериоде конденсатор заряжается.

При отрицательном полупериоде конденсатор разряжается и ток поступает на анод катода VD1. Внешнее падение напряжения для данной электрической цепи происходит при наличии в электрической схеме — двух резисторов и лампочки. Так же, можно учесть, что при переходе тока от анода к катоду — в диоде VD1 — так же существует свой потенциальный барьер. То есть диоду тоже свойственно в какой то степени подвергаться нагреванию, при котором происходит внешнее падение напряжения.

На батарею GB1 состоящей из трех элементов, от зарядного устройства \при подключении фонарика к внешнему источнику переменного напряжения\ поступает ток двух потенциалов \+ -\. В батарее происходит восстановление электрохимического состава батареи — в свое первоначальное состояние.

Следующая схема \рис.3\ которая встречается в светодиодных фонариках, состоит из следующих элементов электроники:

  • двух резисторов \R1; R2\;
  • диодного моста состоящего из четырех диодов;
  • конденсатора;
  • диода;
  • светодиода;
  • ключа;
  • батареи;
  • лампочки.

Для данной схемы, внешнее падение напряжения происходит за счет всех состоящих элементов электроники — соединенных в этой цепи. Одна диагональ диодного моста мостовой схемы подключается к внешнему источнику переменного напряжения, другая диагональ диодного моста соединена с нагрузкой — состоящей из определенного количества светоизлучающих диодов.

Все подробные описания по замене элементов электроники при проведении ремонта фонарика, а так же проведение диагностики данных элементов — Вы сможете найти в этом сайте, где приведены подобные темы в которых усматривается ремонт бытовой техники.

Как отремонтировать светодиодный фонарик

По своей работе приходится иногда пользоваться налобным фонариком. Примерно через полгода после приобретения аккумуляторная батарея фонарика перестала заряжаться после его включения на подзарядку через сетевой шнур.

При установлении причины поломки налобного фонарика, ремонт сопровождался фотоснимками, чтобы изложить данную тему в наглядном примере.

Причина неисправности была в начале не ясна, так как при включении фонарика на подзарядку — сигнальная лампочка при этом загоралась и сам фонарик при нажатии кнопки выключателя — излучал слабый свет. Так в чем же может быть причина такой неисправности? В неисправности аккумуляторной батареи или в какой либо другой причине?

Необходимо было вскрыть корпус фонарика для его осмотра. На фотоснимках \фото №1\ наконечником отвертки указаны места скрепления \соединения\ корпуса.

Если корпус фонарика не поддается вскрытию, нужно внимательно осмотреть — все ли вывернуты шурупы.

На фотоснимке №2 показан понижающий преобразователь как по напряжению так и по силе тока.

В схеме не следует искать причину неисправности, так как при подключении к внешнему источнику — сигнальная лампочка светится \фото №2 красная светодиодная лампочка\. Проверяем дальше соединения.

Перед нами на фотоснимке \фото №3\ изображен выключатель света светодиодного фонарика. Контакты кнопочного поста выключателя представляют из себя устройство двойного выключателя света, где для данного примера загораются:

  • шесть светодиодных ламп,
  • двенадцать светодиодных ламп

фонарика. Два контакта выключателя как мы видим, замкнуты накоротко и к данным контактам припаян общий провод. К двум следующим контактам выключателя припаяны два провода — по отдельности, от которых поступает ток на освещение:

  • шести ламп;
  • двенадцати ламп.


Контакты выключателя света \при переключении\ достаточно проверить пробником как это показано на фотоснимке №4. К общему контакту \два короткозамкнутых контакта\ прикасаемся пальцем руки и к другим двум контактам поочередно соприкасаемся пробником.

При исправности выключателя, светодиодная лампочка пробника загорается \фото №4\. Выключатель света исправный, проводим дальше диагностику.

Сетевой шнур здесь также можно проверить пробником \фото №5\. Для этого, пальцем руки нужно замкнуть штырьки штепсельной вилки накоротко и поочередно к первому и ко второму контакту разъема кабеля подсоединить пробник. Загорание лампочки пробника будет указывать на отсутствие разрыва в проводе сетевого шнура.


Сетевой шнур для подзарядки аккумуляторной батареи исправен, проводим дальше диагностику. Необходимо также проверить аккумуляторную батарею фонарика.

На увеличенном изображении аккумуляторной батареи \фото №6\ видно, что для ее подзарядки поступает постоянное напряжение — 4 Вольт. Сила тока данного напряжения составляет — 0,9 ампер\час. Проверяем аккумуляторную батарею.

Прибор мультиметр в этом примере устанавливается в диапазон измерения постоянного напряжения от 2 до 20 Вольт, чтобы измеряемое напряжение соответствовало установленному диапазону.

Как мы видим, дисплей прибора показывает постоянное напряжение батареи — 4,3 Вольт. Фактически, данный показатель должен принимать большее значение, — то есть здесь недостаточное напряжение для питания светодиодных ламп. В светодиодных лампах учитывается потенциальный барьер для каждой такой лампы, — как нам известно из электротехники. Следовательно, батарея не получает необходимое напряжение при подзарядке.

А вот и вся причина неисправности \фото №8\. Данная причина неисправности была установлена не сразу, — в разрыве контактного соединения провода с аккумуляторной батареей.

Что здесь можно отметить:

Провода в данной схеме ненадежные для паяния, так как тонкое сечение провода не позволяет надежно крепиться в месте припаивания.

Но и такая причина поломки устранима, проводка была заменена на более надежное сечение и светодиодный фонарик в настоящее время действующий, работает безотказно.

Изложенную тему считаю незаконченной, будут приводиться в примерах для Вас, — ремонты других типов фонариков.

На этом пока все.


Твитнуть

Рассказать ВК

Нажать Класс




    Я бы назвал это «Записки хренового электрика»! Автор элементарно не понимает, как работает схема, её элементы, путает понятия. На примере работы схемы по рис. 2: R1 служит для разряда конденсатора C1 после отключения фонарика от сети в целях безопасности. Никакого «теряния» напряжения «на дальнейшем участке» нет, пусть Автор подключит вольтметр и посмотрит на него, чтобы убедиться в этом. Резистор R2 служит ограничителем тока. Светодиод VD2 служит не только индикатором, но и подаёт положительный потенциал на + аккумулятора.
    Конденсатор C1 в данной схеме является гасящим (а не сглаживающим фильтром), вот на нём то и гасится избыток переменного напряжения.
    Про потенциальный барьер тоже такого наворотил — читать смешно. А ток «ток двух потенциалов»?! Согласно классической физике, ток течёт от положительного потенциала к отрицательному, а электроны движутся наоборот.
    Автор в школе то учился?
    И такое у него — везде. Грустно. А ведь кто-то принимает его «откровения» за чистую монету.

    Здравствуйте, povaga! У меня перестал заряжаться фонарь «Облик 2077» на одном светодиоде. Схемы не могу найти, но примерно как на рисунке №3. Отличие: нет конденсатора С2, диода VD5, к выключателю SA1 припаяны два резистора и плата на три контакта. Замерил напряжение после моста — 2 вольта, аккумулятор на 4 вольта, как он может заряжаться? Помогите, пожалуйста, со схемой работы и электрической схемой. Заранее благодарен, с уважением, Долдин.