Организация пространства. Советы и идеи. Сад и участок

Потери напряжения в двухпроводной линии. Расчет падения напряжения на проводах

В домашних условиях мы часто применяем переносные удлинители – розетки для временного (как правило остающееся на постоянно ) включения бытовых приборов: электронагревателя, кондиционера, утюга с большими токами потребления.
Кабель для этого удлинителя обычно выбирается по принципу – что попало подруку, а это не всегда соответствует необходимым электрическим параметрам.

В зависимости от диаметра (или от поперечного сечения провода в мм.кв.)провод обладает определенным электрическим сопротивлением для прохождения электрического тока.

Чембольше поперечное сечение проводника, тем меньше его электрическое сопротивление, тем меньше падение напряжения на нем. Соответственно меньше потеря мощности в проводе на его нагрев.

Проведем сравнительный анализпотери мощности на нагрев в проводе в зависимости от его поперечного сечения. Возьмем наиболее распространенные в быту кабели с паперечным сечением: 0,75; 1,5; 2,5 мм.кв. для двух удлинителей с длиной кабеля: L = 5 м. и L = 10м .

Возьмем для примера нагрузку в виде стандартного электронагревателя с электрическими параметрами:
— напряжение питания
U = 220 Воль т ;
— мощность электронагревателя
Р = 2,2 КВт = 2200 Вт ;
— ток потребления I = P / U = 2200 Вт / 220 В = 10 А.

Из справочной литературы, возьмем данные сопротивлений 1 метра провода разных поперечных сечений.

Приведена таблица сопротивлений 1 метра провода изготовленного из меди и алюминия.


Посчитаем потерю мощности, уходящей на нагрев для поперечного сечения провода S = 0,75 мм.кв. Провод изготовлен из меди.

Сопротивление 1 метра провода (из таблицы) R 1 = 0,023 Ом.
Длина кабеля L = 5 метров.
Длина провода в кабеле (туда и обратно)2 · L =2
· 5 = 10 метров .
Электрическое сопротивление провода в кабеле R = 2 · L · R 1 = 2 · 5 · 0,023 = 0,23 Ом.

Падение напряжения в кабеле при прохождении тока I = 10 A будет: U = I · R = 10 А · 0,23 Ом = 2,3 B .
Потеря мощности на нагрев в самом кабеле составит:P = U · I = 2,3 В · 10 А = 23 Вт .

Если длина кабеляL = 10 м . (того же сечения S = 0,75 мм.кв .),потеря мощности в кабеле составит 46 Вт . Это составляет примерно 2 % мощности потребляемой электронагревателем от сети.

Для а кабеляс алюминиевыми жилами того же сечения S = 0,75 мм.кв . показания увеличиваютсяи составляютдля L = 5 м-34,5 Вт. Для L = 10 м— 69 Вт.

Все данные расчетовдля кабелей сечением 0,75; 1,5; 2,5 мм.кв. для длины кабелейL = 5 и L = 10 метров,приведены в таблице.
Где: S – сечение провода в мм.кв.;
R 1
– сопротивление 1 метра провода в Ом;
R -сопротивление кабеля в Омах;
U – падение напряжения в кабеле в Вольтах;

Р – потеря мощности в кабеле в ватах или в процентах.

Какие же выводы нужно сделать из этих расчетов?

  • — При одном и том же поперечном сечении, медный кабель имеет больший запас надежности и меньше потерь электрической мощности на нагрев провода Р .
  • — С увеличением длины кабеля увеличиваются потери Р . Чтобы скомпенсировать потеринеобходимо увеличить поперечное сечение проводов кабеля S .
  • — Кабель желательно выбирать в резиновой оболочке, а жилы кабеля многожильными .

Для удлинителя желательно использовать евро-розетку и евро-вилку. Штырьки евро-вилки имеют диаметр 5 мм . У простой электрической вилки диаметр штырьков 4 мм . Евро-вилки рассчитаны на больший ток, чем простые розетка и вилка. Чем больше диаметр штырьков вилки, тем больше площадь контакта в месте соединения вилки и розетки, следовательно меньшее переходное сопротивление. Это способствует меньшему нагревув месте соединения вилки и розетки.

Краткие теоретические сведения. Электрические сети, рассчитанные по допустимому нагреву, проверяют по потере напряжения. При передаче электроэнергии по проводам часть напряжения теряется на сопротивлении проводов и в результате в конце линии, т. е. у электроприемников, напряжение становится меньшим, чем в начале линии.

Согласно ГОСТ 13109-97 в электрических сетях до 1 кВ в нормальном режиме допускаются отклонения напряжения от номинального в пределах от -5 до +5%, т. е. для того чтобы электроприемники могли нормально работать и выполнять заложенные в них функции, напряжение на их выводах должно быть не менее 95% U н и не более 105% U н .

Таким образом, выбранное сечение проводников должно соответствовать также условиям обеспечения электроприемников качественной электрической энергией.

Потери напряжения в элементах системы электроснабжения не нормируются. Однако допускается считать, что потери напряжения не должны превышать 1,5...1,8% в магистральном шинопроводе; 2...2,5 % в распределительном шинопроводе с равномерной нагрузкой; 4…6% в сетях 0,38 кВ (от ТП до ввода в здания).

В общем случае допустимая потеря напряжения в электрических сетях до 1 кВ от источника питания (ТП) до электроприемника определяется по формуле:

питающем трансформаторе; U min - минимально допустимое напряжение на зажимах электроприемника, U min = 95%.

U доп % = 10 − U Т % ;

U Т % =β Т (

U а % cos ϕ T − U p %sin ϕ T ,

где β

Коэффициент загрузки трансформатора;

S H . T

U a % =

Активная составляющая напряжения КЗ трансформатора;

Р к - номинальные

S H . T

потери мощности КЗ трансформатора;

U р % = U к 2 % − U а 2 % - реактивная составляющая

где I р - расчетный ток линии, A; L - длина линии, км; r 0 , х 0 - соответственно активное и реактивное сопротивление 1 км проводника линии, Ом/км (табл. 1.10).

Таблица 1.10 - Активное и индуктивное сопротивление проводов с медными и алюминиевыми жилами

Активное сопротивление,

Индуктивное сопротивление

Ом/км t =20о С

(меди и алюминия), Ом/км

проводника,

для воздушных линий

для проводов,

мм2

алюминия

проложенных в трубах,

расстоянии между

и кабелей

проводами 15 см

Фактическая потеря напряжения должна быть меньше допустимой потери напряжения. Если окажется, что фактическая потеря напряжения больше допустимой величины, то выбирают проводник (проводники) большего на одну ступень сечения и повторяют поверочный расчет.

Пример. В упрощенной форме (без учета способа прокладки, условий окружающей среды) по допустимому нагреву выбрать кабель, питающий распределительный шкаф (ШР) и проверить его по потере напряжения. Длина кабельной линии (L ) 42 м. Данные нагрузки распределительного шкафа: установленная мощность 28,6 кВт; cos ϕ = 0,85; К с = 0,8.

Допустимая потеря напряжения для рассчитываемого участка сети 4%.

Определяем расчетную мощность ШР:

Рр =Кс ·Руст = 0,8-28,6 = 22,9 кВт.

Расчетный ток распределительного шкафа:

I p =

40.9A

3U cos ϕ

Выбираем по нагреву кабель АВВГ 3x10+1x6 мм2 с длительно допустимым током 42 А. Фактическая потеря напряжения в кабеле, питающем ШР, определяется по формуле (1.34):

U ф = 1.73 40.9(3.33 0.85 + 0.073 0.52)0.042 = 8.53B

U Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок и потребителей. М.: НЦ ЭНАС, 2004.

3. Указания по определению электрических нагрузок в промышленных установках. М.: ВНИИПИ Тяжпромэлектропроект, 1991.

4. Ермилов А.А. Основы электроснабжения промышленных предприятий. М.: Энергия, 1983.

5. Кудрин Б.И. Электроснабжение промышленных предприятий. М.: Энергоатомиздат, 2005.

6. Вахнина В.В. и др. Проектирование систем электроснабжения машиностроительных предприятий: Учебное пособие для курсового и дипломного проектирования. – Тольятти: ТГУ, 2004.

7. ГОСТ 13109-97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения / Межгосударственный Совет по стандартизации, метрологии и сертификации. Минск, 1998.

В данной статье я буду рассматривать 2 примера определения потери напряжения в воздушной линии 10 кВ, когда нагрузка подключена в конце линии и с несколькими нагрузками вдоль линии.

Пример 1 – Определение потери напряжения когда нагрузка подключена в конце линии

Определить потерю напряжения в трехфазной воздушной линии с номинальным напряжением Uном.=10 кВ протяженностью l = 2 км, питающей электрооборудование коммунального предприятия мощностью Р=100 кВт. Коэффициент мощности нагрузки cosϕ = 0,8. Линия выполнена алюминиевыми проводами марки А-25 сечением 25 мм2, расстояние между фазами 600 мм.

  • γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
  • s – номинальное сечение провода(кабеля),мм2;

Также вы можете встретить в тех. литературе еще одну формулу по определению активного сопротивления провода (кабеля):

  • ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 [Л2. с.30].

2. Определяем индуктивное сопротивление для провода марки А-25 [Л1.с.420]:

  • Дср. – среднее геометрическое расстояние между осями проводов, мм;
  • d – диаметр провода, мм;
  • µ — относительная магнитная проницаемость для цветных металлов (немагнитных) равна 1, для стальных проводов µ может достигать значений 10 3 и даже больше.

где: расстояние между проводами первой и второй фазы Д1-2= 600 мм, между второй и третью Д2-3 = 600 мм, между первой и третью Д1-3= 600 + 25 + 600 = 1225 мм.

4. Определяем потерю напряжения в линии [Л1.с.422]:

Пример 2 – Определение потери напряжения с несколькими нагрузками вдоль линии

Определить потерю напряжения в трехфазной сети 10 кВ, изображенной на рис.1. Сеть выполнена воздушной линией с алюминиевыми проводами марки А-35 сечением 35 мм2 на участке А-Б и проводами марки А-25 сечением 25 мм2 на участке Б-В. Расстояние между фазами равно 600 мм. Соответствующая нагрузка, коэффициент мощности cosϕ в ответвлениях, а также длины участков сети указаны на схеме.

2. Определяем индуктивное сопротивление для провода марки А-35 [Л1.с.420]:

2.1 Определяем среднее геометрическое расстояние между осями трех проводов проложенных в одной плоскости [Л1.с.419]:

где: расстояние между проводами первой и второй фазы Д1-2= 600 мм, между второй и третью Д2-3 = 600 мм, между первой и третью Д1-3= 600 + 35 + 600 = 1235 мм.

4. Значения активного и индуктивного сопротивления для марки провода А-25 берем из примера 1: r 02 = 1,26 Ом/км; х 02 = 0,256 Ом/км; tgϕ 2 = 0,75.

  • Uном. – номинальное напряжение, В;
  • r 01 , x 01 , r 02 , x 02 – активные и индуктивные сопротивления трехфазных линий, Ом/км;
  • Р1,Р2 – мощности в ответвлениях, кВт;
  • L 1 ,L 2 – длины от начала линии до соответствующего ответвления, км;
  • tgϕ 1 , tgϕ 2 – коэффициент мощности;

Литература:

1. Основы проектирования систем электроснабжения. Маньков В.Д. 2010 г.
2. Справочная книга электрика. Григорьева В.И. 2004 г.

Интересует нормирование потери напряжения в линиях на различных участках электрической сети:

ЦП – ТП (РТП) – ВРУ (ГРЩ) – ЩО (ЩР или ЩС) – н.у. лампа ЭО (самый мощный н.у. ЭП).

Принятые сокращения (определения см. в главе 7.1 ПУЭ и в конце этой статьи):

  • ТЭО – технико-экономическое обоснование,
  • ЦП – центр питания,
  • ТП – трансформаторная подстанция,
  • РТП – распределительная трансформаторная подстанция,
  • ВРУ – вводно-распределительное устройство,
  • ГРЩ – главный распределительный щит,
  • ЩО – щиток рабочего освещения,
  • ЩАО – щиток аварийного освещения,
  • ЩР – щит распределительный,
  • ЩС – щит силовой,
  • ЭО – электроосвещение,
  • ЭП – электроприёмник,
  • ЭУ – электроустановка,
  • н.у. – наиболее удалённый(ая),
  • р.л. – распределительная линия,
  • гр.л. – групповая линия,
  • д.з.у.о.н. – допустимые значения установившегося отклонения напряжения.

Потеря напряжения в системе электроснабжения - величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (ГОСТ23875-88 «Качество электрической энергии. Термины и определения»), например, алгебраическая разница между напряжением в начале (например, у источника питания) и в конце (на зажимах электроприемника) линии.

На вторичных обмотках трансформаторов ТП напряжение 0,4кВ (п. 1.2.23 ПУЭ 7-го изд.), т.е. 105% от номинального напряжения электрической сети 0,38кВ (ГОСТ 721 и ГОСТ 21128). Имеем от шин ТП до ВРУ “располагаемую” потерю напряжения в нормальном режиме 5% - среднее значение в пределах 4-6% (п. 5.2.4 РД 34.20.185-94). Нормально допустимые значения установившегося отклонения напряжения на зажимах ЭП ±5% от номинального напряжения сети (п. 5.2 ГОСТ 13109-97).

Имеем “располагаемую” потерю напряжения ≈10% от шин РУ 0,4кВ ТП до н.у. ЭП, но рекомендуется, чтобы суммарные потери напряжения от шин ТП до н.у. лампы ЭО не превышали 7,5% (СП 31-110-2003). Значит, если от шин 0.4кВ ТП до ВРУ - 5%, то на участке от ВРУ до н.у. лампы ЭО не более 2.5%, а для остальных ЭП потери в ЭУ зданий не должны превышать 4% (ГОСТ Р 50571.15-97):

  • от шин ТП до ВРУ - 5% (380В);
  • от шин ТП до н.у. лампы ЭО - 7,5% (370В);
  • от шин ТП до н.у. ЭП - 9% (364,8В).

А потери напряжения в ЭУ здания на различных участках электрической сети, т.е. р.л. и гр.л. (см.столбцы «b» и «c» табл.1), не нормируются и выбираются исходя из конкретных условий, ТЭО и т.д. С точки зрения уменьшения трудоёмкости проектирования, потери напряжения на различных участках электрической сети, на мой взгляд, можно принять следующими, от ВРУ до:

  • н.у. лампы ЭО не более 2.5%, из них
  • р.л. до ЩО – 0,5%,
  • гр.л. до н.у. ламп ЭО – 2%.
  • н.у. ЭП не должны превышать 4%, из них
  • р.л. до ЩР – 2%,
  • линии до н.у. ЭП – 2%.
  • эл.двигателя, РЭА и спец.оборудования - по паспорту, но не более 15%.
  • Для цепей напряжения счетчиков учета электроэнергии – 0,5% (РМ-2559).

Потерю напряжения в каждой групповой линии (при равных сечениях проводников) в сетях внутреннего ЭО и штепсельных розеток рассчитывать не требуется, т.к. нет действующих руководящих документов, обязывающих делать такой расчет, который необходим только для выявления значений при наихудших условиях, т.е. для н.у. лампы ЭО и самой нагруженной линии н.у. ЭП.

По опыту проектирования потери напряжения во внутриквартирных групповых линиях общего освещения могут приниматься равными 1-0,8 % (Тульчин И.К., Нудлер Г.И., Электрические сети и электрооборудование жилых и общественных зданий - 2-е изд., М.: Энергоатомиздат, 1990; см. табл. 16,1 «Пределы допустимых потерь напряжения, при которых параметры электрической сети имеют значения, близкие к оптимальным» на стр. 253).

На шинах н/н ТП в период наименьших нагрузок сетей не выше 100% номинального напряжения (п. 1.2.23 ПУЭ 7-го изд.) и потери напряжения, зависящие от мощностей нагрузки в сетях, пропорционально уменьшаются.

Но это еще не все! Нужно сделать расчет на потери напряжения в послеаварийном режиме, чтобы не выйти за предельно допустимые значения установившегося отклонения напряжения (ГОСТ 13109-97): ±10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение). Расчет на потери напряжения в послеаварийном режиме м.б. актуален, например, для взаиморезервируемых кабельных линий.

Позиция Ростехнадзора:
Информационно-справочное издание “Новости электротехники”,
ежегодное приложение “Вопрос-ответ“, приложение к журналу № 6(48) 2007.

У проектировщиков существует немало разногласий в понимании СП 31-110-2003, п. 7.23. Отклонение напряжения от номинального на зажимах силовых электроприемников и н.у. ламп ЭО не должно превышать 5% в норм. режиме, а от шин ТП до н.у. ламп ЭО – 7,5%. Значит, ВРУ – н.у. ламп ЭО – 5% от 380/220 В, но тогда от ТП до ВРУ необходимо подавать повышенное напряжение, чтобы с учетом потерь на этой линии (2,5%) получить во ВРУ номинальное значение напряжения.

Прежде всего следует разделить понятия «отклонение напряжения» и «потеря напряжения». В первом абзаце п. 7.23 СП 31-110-2003 нормируется отклонение напряжения от номинального на зажимах электроприемников ламп накаливания. В третьем абзаце п. 7.23 СП 31-110-2003 речь идет о потере напряжения в линиях на участке от шин 0,4 кВ трансформаторной подстанции 6–10/0,4 кВ до наиболее удаленного электроприемника.
Выполнение условия первого абзаца является обязательным, третьего абзаца – рекомендуемым.
В соответствии с указаниями п. 1.2.23 ПУЭ 7-го изд., напряжение на шинах напряжением 3–20 кВ электростанций и подстанций должно поддерживаться не ниже 105% номинального в период наибольших нагрузок и не менее 100% номинального в период наименьших нагрузок в этих сетях.
С учетом этих исходных положений необходимо производить проверку выбранных по другим условиям сечений проводников. Потеря напряжения в линиях в нормальном режиме должна быть такой, чтобы на зажимах наиболее удаленного электроприемника напряжение как при наибольших, так и при наименьших нагрузках оказывалось в пределах ±5% номинального. При выполнении проверки сечений выбранных проводников по потере напряжения необходимо учитывать положение переключателя ответвлений на трансформаторных подстанциях напряжением 6–10/0,4 кВ.

Виктор Шатров, референт Ростехнадзора.

Нормативные ссылки:

ПУЭ 7-го издания.
Уровни и регулирование напряжения, компенсация реактивной мощности.

1.2.22. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества электрической энергии в соответствии с требованиями ГОСТ 13109.

1.2.23. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на шинах напряжением 3-20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей. Отклонения от указанных уровней напряжения должны быть обоснованы.

1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях производятся исходя из необходимости обеспечения требуемой пропускной способности сети в нормальных и послеаварийных режимах при поддержании необходимых уровней напряжения и запасов устойчивости.

ГОСТ 13109-97. Нормы качества электрической энергии в системах ЭС общего назначения. 5.2. Отклонение напряжения.

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:

  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения δUу на выводах приемников электрической энергии равны соответственно ± 5 и ± 10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии.

РД 34.20.185-94
Инструкция по проектированию городских электрических сетей.
Гл. 5.2 Уровни и регулирование напряжения, компенсация реактивной мощности

5.2.4. Предварительный выбор сечений проводов и кабелей допускается производить исходя из средних значений предельных потерь напряжения в нормальном режиме: в сетях 10(6) кВ не более 6 %, в сетях 0,38 кВ (от ТП до вводов в здания) не более 4-6 %.

Большие значения относятся к линиям, питающим здания с меньшей потерей напряжения во внутридомовых сетях (малоэтажные и односекционные здания), меньшие значения - к линиям, питающим здания с большей потерей напряжения во внутридомовых сетях (многоэтажные многосекционные жилые здания, крупные общественные здания и учреждения).

СП 31-110-2003
Проектирование и монтаж электроустановок жилых и общественных зданий.
7. Схемы электрических сетей.

7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5 %, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках - ±10 %. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10 %.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15 %.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5 %. Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ Р 50571.15-97 (МЭК 364-5-52-93). Электроустановки зданий.
Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки.
525. Потери напряжения в электроустановках зданий.

Потери напряжения в электроустановках зданий не должны превышать 4% от номинального напряжения установки. Временно действующие условия, например переходные процессы и колебания напряжения, [вызванные неправильной (ошибочной) коммутацией,] не учитываются.

МЭК 60364-7-714-1996, IEC 60364-7-714 (1996). Электрические установки зданий.
Часть 7. Требования к специальным установкам или помещениям.
Раздел 714. Наружные осветительные установки.

714.512. Падение напряжения в нормальных рабочих условиях должно быть совместимо с условиями, возникающими от пускового тока ламп.

РД 34.20.501-95
Правила технической эксплуатации электрических станций и сетей РФ.
5. Электрическое оборудование электростанций и сетей.

5.12.7. Сеть освещения электростанций должна получать питание через стабилизаторы или от отдельных трансформаторов, обеспечивающих возможность поддержания напряжения освещения в необходимых пределах. Напряжение на лампах должно быть не выше номинального. Понижение напряжения у наиболее удаленных ламп сети внутреннего рабочего освещения, а также прожекторных установок должно быть не более 5% номинального напряжения; у наиболее удаленных ламп сети наружного и аварийного освещения и в сети 12-42 В не более 10% (для люминесцентных ламп не более 7,5%).

ГОСТ Р МЭК 60204-1-99 (МЭК 60204-1). Безопасность машин.
Электрооборудование машин и механизмов. Общие требования.
13 Кабели и провода. 13.5 Падение напряжения на проводах

В нормальных рабочих условиях падение напряжения на участке от источника питания до места приложения нагрузки не должно превышать 5 % от номинального.

РМ 2559
Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

5.15. Сечение и длина проводов и кабелей, используемых для цепей напряжения счетчиков, должны выбираться так, чтобы потеря напряжения составляла не более 0,5 % номинального напряжения.

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке?

  1. Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.

Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.

Вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

Сопротивление провода рассчитывается так:

R=рl/S , где

р - удельное сопротивление провода, Ом*мм 2 /м;

l - длина провода, м;

S - площадь поперечного сечения провода, мм 2 .

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм 2 /м , и для алюминия р=0,028 Ом*мм 2 /м . Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.

Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм 2 . Там будем подключаться нагрузка 3,3 кВт (I=15 А).

Учтите, что ток "бежит" по 2-х жильному кабелю туда и обратно, поэтому "пробегаемое" им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

U=(рl)/s*I=0,0175*100/1,5*15=17,5 В

Что составляет практически 9% от номинального (входного) значения напряжения.

Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).

На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.

Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.

Давайте повторим данный расчет, но уже для провода сечением 2,5 мм 2 .

U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.

Теперь повторим данный расчет, но уже для провода сечением 4 мм 2 .

U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.

Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.

Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм 2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм 2 .

Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм 2 длинной 50 м.

Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм 2 не спасет. Тут выход один - это нужно переносить источник питания ближе к потребителю.

Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.

Не забываем улыбаться:

Звонок мужу в командировку:
- Дорогой, а почему в кране нет воды?
- Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно...
- Милый, а почему газа нет?
- Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено...
- Родной, но почему же тогда нет электроэнергии?!
- Пойди заплати за коммуналку, дура!