Организация пространства. Советы и идеи. Сад и участок

Динамическая теория электромагнитного поля. Магнитное поле

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:
  • Перемещающиеся электрические заряды.
  • Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля
  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства
  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Основные правила

Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 90 0 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля
  • Сцепление потоков (Ψ ).
  • Вектор магнитной индукции (В ).
  • Магнитный поток (Ф ).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l) .

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 90 0 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).
Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 90 0 , а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер» , который равен протеканием индукции величиной 1 Тл по площади в 1 м 2 .

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф .

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями. Их разделяют на группы:
  • Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
  • Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
  • Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
  • Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
  • Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).
Рассмотренные магнетики также классифицируются еще по двум категориям:
  • Магнитомягкие материалы . Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении ( , генератор, ).
  • Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, . У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

Что такое сверхсильные магнитные поля?

В науке для познания природы в качестве инструментов используются различные взаимодействия и поля. В ходе физического эксперимента исследователь, воздействуя на объект исследования, изучает отклик на это воздействие. Анализируя его, делают заключение о природе явления. Наиболее эффективным средством воздействия является магнитное поле, так как магнетизм – широко распространенное свойство веществ.

Силовой характеристикой магнитного поля является магнитная индукция. Далее приводится описание наиболее распространенных методов получения сверхсильных магнитных полей, т.е. магнитных полей с индукцией свыше 100 Тл (тесла).

Для сравнения ­–

  • минимальное регистрируемое с помощью сверхпроводящего квантового интерферометра (СКВИД) магнитное поле – 10 -13 Тл;
  • магнитное поле Земли – 0,05 мТл;
  • сувенирные магниты на холодильник – 0,05 Тл;
  • альнико (алюминий-никель-кобальт) магниты (AlNiCo) – 0,15 Тл;
  • ферритовые постоянные магниты (Fe 2 O 3) – 0,35 Тл;
  • самариево-кобальтовые постоянные магниты (SmCo) - 1,16 Тл;
  • самые сильные неодимовые постоянные магниты (NdFeB) – 1,3 Тл;
  • электромагниты Большого адронного коллайдера – 8,3 Тл;
  • самое сильное постоянное магнитное поле (Национальная лаборатории сильных магнитных полей Флоридского университета) – 36,2 Тл;
  • самое сильное импульсное магнитное поле, достигнутое без разрушения установки (Лос-Аламосская национальная лаборатория, 22 марта 2012 года) – 100,75 Тл.

В настоящее время исследования в области создания сверхсильных магнитных полей проводятся в странах – участниках «Megagauss Club» и обсуждаются на Международных конференциях по генерации мегагауссных магнитных полей и родственным экспериментам (гаусс – единица измерения магнитной индукции в системе СГС, 1 мегагаусс = 100 тесла).

Для создания магнитных полей такой силы необходима очень большая мощность, поэтому в настоящее время их получение возможно только в импульсном режиме, причем длительность импульса не превышает десятков микросекунд.

Разряд на одновитковый соленоид

Самым простым методом получения сверхсильных импульсных магнитных полей с магнитной индукцией в диапазоне 100...400 тесла является разряд ёмкостных накопителей энергии на одновитковые соленоиды (соленоид - это однослойная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра).

Внутренний диаметр и длина используемых катушек обычно не превышают 1 см. Индуктивность их мала (единицы наногенри), поэтому для генерации в них сверхсильных полей требуются токи мегаамперного уровня. Их получают с помощью высоковольтных (10-40 киловольт) конденсаторных батарей с низкой собственной индуктивностью и запасаемой энергией от десятков до сотен килоджоулей. При этом время нарастания индукции до максимального значения не должно превышать 2 микросекунды, иначе разрушение соленоида произойдет раньше, чем будут достигнуто сверхсильное магнитное поле.

Деформация и разрушение соленоида объясняются, что из-за резкого возрастания тока в соленоиде существенную роль играет поверхностный («скин») эффект - ток концентрируется в тонком слое на поверхности соленоида и плотность тока может достигать очень больших величин. Следствием этого является возникновение в материале соленоида области с повышенными температурой и магнитным давлением. Уже при индукции 100 тесла поверхностный слой катушки, выполненный даже из тугоплавких металлов, начинает плавиться, а магнитное давление превышает предел прочности большинства известных металлов. С дальнейшим ростом поля область плавления распространяется вглубь проводника, а на его поверхности начинается испарение материала. В итоге происходит взрывообразное разрушение материала соленоида («взрыв скин-слоя»).

Если же величина магнитной индукции превышает значение 400 тесла, то такое магнитное поле обладает плотностью энергии, сравнимой с энергией связи атома в твёрдых телах и намного превышает плотность энергии химических взрывчатых веществ. В зоне действия такого поля происходит, как правило, полное разрушение материала катушки со скоростью разлета материала витка до 1 километра в секунду.

Метод сжатия магнитного потока (магнитная кумуляция)

Для получения максимального магнитного поля (до 2800 Тл) в условиях лаборатории применяется метод сжатия магнитного потока (магнитная кумуляция ).

Внутри проводящей цилиндрической оболочки (лайнера ) с радиусом r 0 и сечением S 0 создается аксиальное стартовое магнитное поле с индукцией B 0 и магнитным потоком Ф = B 0 S 0 и. Затем лайнер симметрично и достаточно быстро сжимается внешними силами, при этом его радиус уменьшается до r f и площадь сечения до S f . Пропорционально площади сечения уменьшается и магнитный поток, пронизывающий лайнер. Изменение магнитного потока в соответствии с законом электромагнитной индукции вызывает возникновение в лайнере индуцированного тока, создающего магнитное поле, стремящееся компенсировать уменьшение магнитного потока. При этом магнитная индукция соответственно увеличивается до значения B f = B 0 *λ* S 0 / S f , где λ – коэффициент сохранения магнитного потока.

Метод магнитной кумуляции реализован в устройствах, получивших название магнитокумулятивных (взрывомагнитных) генераторов . Сжатие лайнера осуществляется давлением продуктов взрыва химических взрывчатых веществ. Источником тока для создания начального магнитного поля служит конденсаторная батарея. Основоположниками исследований в области создания магнитокумулятивных генераторов были Андрей Сахаров (СССР) и Кларенс Фоулер (США).

В одном из опытов в 1964 году на магнитокумулятивном генераторе МК-1 в полости диаметром 4 мм удалось зарегистрировать рекордное поле 2500 Тл. Однако неустойчивость магнитной кумуляции явилась причиной невоспроизводимого характера взрывной генерации сверхсильных магнитных полей. Стабилизация процесса магнитной кумуляции возможна при сжатии магнитного потока системой последовательно включаемых коаксиальных оболочек. Такие устройства называют каскадными генераторами сверхсильных магнитных полей. Их основное достоинство заключается в том, что они обеспечивают стабильность работы и высокую воспроизводимость сверхсильных магнитных полей. Многокаскадная конструкция генератора МК-1, использующая 140 кг взрывчатого вещества, обеспечивающих скорость сжатия лайнера до 6 км/с, позволила получить в 1998 году в Российском федеральном ядерном центре рекордное в мире магнитное поле 2800 тесла в объеме 2 см 3 . Плотность энергии такого магнитного поля более чем в 100 раз превышает плотность энергии самых мощных химических взрывчатых веществ.

Применение сверхсильных магнитных полей

Начало использованию сильных магнитных полей в физических исследованиях было положено трудами советского физика Петра Леонидовича Капицы в конце 1920-х годов. Сверхсильные магнитные поля применяются в исследованиях гальваномагнитных, термомагнитных, оптических, магнитно-оптических, резонансных явлений.

Они применяются, в частности:


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

"Анализ задачи общего воздействия динамическим магнитным полем на человека и формирование требований на технические средства комплексной магнитотерапии"

МИНСК, 2008


Воздействию магнитных полей на организм человека посвящено большое число работ и, хотя физика воздействия до сих пор проявлена слабо, имеется значительный ряд исследований по установлению функциональных связей состояния организма человека с параметрами магнитных полей. На повестке дня стоит вопрос формирования динамических магнитных полей, имеющих определенную функциональную направленность, прежде всего для лечения различных заболеваний. Причем формирование магнитных полей в локальной области уже не отвечает многим требованиям медицины. Требуется формирование динамических магнитных полей вокруг всего организма человека вначале как физиотерапевтической процедуры, а в дальнейшем и как фактора среды обитания.

Методологическое, математическое, физиологическое и, наконец, техническое решение этой задачи для формирования магнитных полей явилось бы прецедентом решения аналогичных задач для других видов полей и, в конечном итоге, привело бы к решению глобальной задачи формирования нужной структуры физических полей вокруг человека, наличие которых помогло бы ему справиться с болезнями. Для развития рассматриваемого направления с целью повышения эффективности лечения, расширения класса заболеваний, охватываемых системами магнитотерапии, требуется решение следующих вопросов:

· разработка единичного универсального излучателя магнитного поля, методики его расчета и оптимизации параметров в соответствии с заданными критериями;

· разработка способов формирования оптимальной конфигурации поля в целом, соответствующей заданной методике лечения;

· конструирование эффективных технических средств для создания заданных полей вокруг человека;

· исследование механизмов воздействия динамических магнитных полей (ДМП) на организм человека и его важнейшие функции;

· разработка эффективных каналов обратной связи и отыскание их параметров с целью автоматизированного управления характеристиками ДМП в ходе воздействия на основе измерения реакцией пациента.

В настоящем разделе сконцентрировано внимание на формировании динамических магнитных полей вокруг всего человека. Под динамическим магнитным полем будем понимать поле, изменяющееся во времени и в пространстве заданного объема (в данном случае внутри и вокруг человека) и имеющее ячеистую структуру, дискретность которой определяется элементами объекта восприятия (например, органы, сосуды, ткани и т.п.), что позволяет обеспечить достаточную независимость управления векторами магнитного поля в соседних ячейках структуры.

Реализация этой идеи распадается на две задачи. Первая из них связана с техническим решением формирования в заданной локальной области пространства ничтожно малого объема (физическая точка, далее - просто точка) вектора магнитной индукции, локализацией выделенных точек, формированием объемных матриц векторов магнитного поля, локализацией точек с учетом формы тела человека и его органов, обеспечивающей необходимое распределение магнитного поля как внутри тела человека, так и на поверхности. Эта задача обусловливает разработку и создание источников магнитного поля, определение их числа, размеров, пространственного расположения, взаимодействия и конфигурации. Внешним проявлением решения данной задачи является вид объема, в котором размешается человек. Это может быть магнитная комната, магнитный бокс, магнитная камера, магнитная кушетка, магнитный ложемент, магнитный скафандр и др. При этом конструкция объема размещения источников излучения играет не последнюю роль в эффективности воздействия, а тем более в системах, обеспечивающих формирование заданной конфигурации динамического магнитного поля в заданной области пространства.

Вторая задача связана с системой электронного формирования и управления электрическими токами и напряжениями с целью получения заданной динамики (перемещения во времени и пространстве) векторов магнитной индукции в каждой ячейке заданного объема. Рассмотрим эти задачи раздельно.

Формирование метрики векторов магнитного поля

Многомерный вектор динамического магнитного поля D - {Иm, Im} составлен из многомерного вектора пространственного расположения индукторов Иm = {И1, И2,... Иs} и многомерного вектора токов, протекающих через индукторы, Iт = {I1, I2,... Iп}, где s - число индукторов, n - число каналов аппарата. В свою очередь последний составлен из векторов канальных токов Ii = {I,Р, Т,t}, где I - интенсивность, Р - полярность, Т - время подключения, t - текущее время.

Таким образом поставленная задача может быть формализована в следующих этапах:

· синтез пространственного расположения излучателей магнитного поля и формирование параметров одиночного базового излучателя;

· синтез канала формирования тока, изменяющегося во времени по заданному закону в определенном диапазоне интенсивностей и спектра, отражающему закон изменения магнитного поля во времени;

· синтез многомерности каналов, имеющей заданную корреляционную зависимость, отражающей заданную функциональную связь между локалиями и формирующей закон изменения поля в пространстве.

Наложим некоторые ограничения на решаемую задачу синтеза с учетом биологических свойств объекта восприятия и технической реализуемости системы.

Изменения магнитного поля во времени и в пространстве должны иметь периодический или квазипериодический характер, хотя и со сложным периодом формирования. Это связано с периодичностью основных биоритмов объекта (пульс, a-ритм, B-ритм) и периодичностью основной среды обитания (день, ночь и т.п.).

Изменения во времени и в пространстве должны учитывать периодичность биоритмов объекта либо с целью синхронизации с ними, либо наоборот, с целью десинхронизации.

Скорость изменения магнитного поля во времени и в пространстве должна быть одного порядка с основными скоростями функционирования организма объекта на макро-уровне (скорость кровотока, распространение ощущений, сокращение мышц и т.п.) и перекрывать их на достаточные значения в обе стороны.

Дискретность структуры динамического поля во времени, в пространстве и по уровню должны быть одного порядка и функционально связаны с обобщенной дискретностью макроэлементов объекта воздействия (органов человека).

Метрика динамического поля в пространстве должна быть согласована с метрикой макроэлементов и процессов в человеке. Рассмотрим задачу формирования динамического процесса во времени в одной точке пространства. Процесс квантования по уровню и дискретизации по времени.

Рисунок 1 – Диаграмма формирования полей, дисентируясь на следующие кратных по уровню и во времени рассуждения.

Формирование ячеистой структуры магнитного поля на одной конечности человека длиной L ограничено, кроме всего прочего, способностью в концентрации поля. Так как значение индукции магнитного поля в однородной среде убывает пропорционально квадрату расстояния, то по длине конечности в качестве размера локальной ячейки примем область, на границах которой поле убывает в два раза. Если принять, что магнитная индукция в центре ячейки Вц = Bi, а на границе Вг - Вi/2, можно определить ее размер D, исходя из размера ячейки Rя и размера Ri области формирования однородного поля:

(1)

Из последнего соотношения определим размер эффективного действия ячейки:

(2)

Тогда размер ячейки составит

Техническая реализуемость диктует размеры источника излучения в пределах Dя = 3...5 см. Тогда размер одной элементарной ячейки магнитного поля D = 2,41-Dя, = 2,41(3...5) может быть определен в пределах D = 7...12 см.

Следовательно, на длине конечности L-1 м должно быть сформировано от 8 до 14 ячеек, а по длине всего тела человека 16...30 ячеек. Таким образом, порядок размерностей ячеек и процессов определился в пределах 8...30, т.е. значения m и n (рис.1) также должны находиться в пределах 8...30. При этом необходимо учесть, что определяющим фактором в расчете размеров явилась физическая реализуемость источников магнитного поля на современном уровне развития техники.

Анализ метрики поля

Выше проанализирована пространственная метрика ячеистой структуры динамического магнитного поля, создаваемого вокруг человека. Причем диаметр Dя одной ячейки магнитного поля должен находиться в пределах 7...12 см.

На следующем этапе анализа следует выяснить необходимое количество ячеек для формирования замкнутого магнитного поля вокруг человека. Обозначим общую площадь поверхности тела человека Sn и рассчитаем необходимое число ячеек в соответствии с выражением:

(3)

Если принять общую площадь поверхности тела человека в среднем равную Sn = 40000 см2 (с запасом на комфортное расположение пациента), то общее число ячеек определится в пределах N = 400...1000.

Обратимся теперь к вопросу формирования конфигурации объема магнитного поля вокруг человека. Очевидно, что пространственная структура макрополя, окружающая все тело пациента в целом, имеет немаловажное значение для достижения высокоэффективного лечения. Можно предложить множество моделей конфигурации ячеистой структуры излучателей:

· в форме плоскости, на которой располагается человек;

· в форме двух плоскостей, между которыми располагается человек;

Под термином "магнитное поле" принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

    отдельные вещества: ферримагнетики (металлы - преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;

    движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .


Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:

    постоянные магниты;

    подвижные заряды;

    изменяющееся во времени электрическое поле.


С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем . Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.


Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика


Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное - указывает на ориентацию индукции.


Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.


При этом магниты с разноименными полюсами (N - S) притягиваются друг к другу, а с одноименными (N – N, S - S) - отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

К ним относят:

    вектор магнитной индукции (В );

    магнитный поток (Ф);

    потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ - Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл - это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

1Тл=1∙Н/(А∙м)

Направление вектора В определяется по правилу левой руки.


Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая , оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.


Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Потокосцепление

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.


Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

    электрического;

    магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

    антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;

    диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;

    парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью ;

    ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;

    ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Магнитные цепи

На основе работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье -

Введение 1

(1) Наиболее очевидным механическим явлении при электрических и магнитных опытах является взаимодействие, благодаря которому тела, находящиеся в определенных состояниях, приводят друг друга в движение, несмотря на наличие между ними довольно значительного расстояния.

Поэтому для научной трактовки этих явлений прежде всего необходимо установить величину и направление действующей между телами силы, и если найдено, что эта сила в какой-то мере зависит от относительного положения тел и от их электрического или магнитного состояния, то с первого взгляда кажется естественным объяснение этих фактов путем допущения существования чего-то другого, находящегося в покое или в движении в каждом теле, образующего его электрическое или магнитное состояние и способного действовать на расстоянии в соответствии с математическими законами.

Таким путем возникли математические теории статического электричества, магнетизма, механического действия между проводниками, несущими токи, и теория индукции токов. В этих теориях сила, действующая между двумя телами, рассматривается лишь как зависящая от состояния тел и их относительного положения, окружающая среда не принимается во внимание.

Эти теории допускают более или менее явным образом существование субстанций, частицы которых обладают способностью действовать друг на друга на расстоянии. Наиболее полная разработка теории этого рода принадлежит В. Веберу 2 , который включил в нее как электростатические, так и электромагнитные явления.

Сделав это, он, однако, вынужден был допустить, что сила, действующая между двумя электрическими частичками, зависит не только от их взаимного расстояния, но и от их относительной скорости.

Эта теория так, как она была развита Вебером и Нейманом 3 , чрезвычайно остроумна и удивительно исчерпывающа в ее применении к явлениям статического электричества, электромагнитных притяжений, индукции токов и диамагнитных явлений; эта теория для нас тем более авторитетна, что она была руководящей идеей того, кто сделал столь большие успехи в практической части науки об электричестве как путем введения постоянной системы единиц в электрические измерения, так и путем фактического определения электрических величин с неизвестной до сих пор точностью 4 .

(2) Однако механические трудности, связанные с допущением существования частиц, действующих на расстоянии с силами, зависящими от их скоростей, таковы, что они не дают мне возможности рассматривать эту теорию как окончательную, хотя возможно, что она и сейчас может быть полезной в отношении установления координации между явлениями. Поэтому я предпочел искать объяснения фактов в другом направлении, предполагая, что они являются результатом процессов, которые происходят как в окружающей тела среде, так и в самих возбужденных телах, и пытаясь объяснить взаимодействия между удаленными друг от друга телами без допущения существования сил, способных непосредственно действовать на заметных расстояниях.

(3) Та теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления.

(4) Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии. Это пространство может быть наполнено любым родом материи, или мы можем попытаться удалить из нее всю плотную материю, как это имеет место в трубках Гейслера 5 или в других, так называемых вакуумных. Однако всегда имеется достаточное количество материи для того, чтобы воспринимать и передавать волновые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заменить прозрачными телами с заметной плотностью, то мы вынуждены допустить, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира. Мы поэтому имеем некоторое основание предполагать, исходя из явлений света и тепла, что имеется какая-то эфирная среда, заполняющая пространство и пронизывающая все тела, которая обладает способностью быть приводимой в движение, передавать это движение от одной своей части к другой и сообщать это движение плотной материи, нагревая ее и воздействуя на нее разнообразными способами.

(5) Энергия, сообщенная телу нагреванием, должна была ранее существовать в движущейся среде, ибо волновые движения оставили источник тепла за некоторое время до того, как они достигли самого нагреваемого тела, и в течение этого времени энергия должна была существовать наполовину в форме движения среды и наполовину в форме упругого напряжения. Исходя из этих соображений, профессор В. Томсон 6 доказывал, что эта среда должна обладать плотностью, сравнимой с плотностью обычной материи, и даже определил нижнюю границу этой плотности.

(6) Поэтому мы можем как данное, выведенное из отрасли науки, независимо от той, с которой мы (в рассматриваемом случае) имеем дело, принять существование проникающей среды, обладающей малой, но реальной плотностью, обладающей способностью быть приводимой в движение и передавать движения от одной части к другой с большой, но не бесконечной скоростью.

Следовательно, части этой среды должны быть так связаны, что движение одной части каким-то способом зависит от движения остальных частей, и в то же самое время эти связи должны быть способны к определенному роду упругого смещения, поскольку сообщение движения не является мгновенным, а требует времени.

Поэтому эта среда обладает способностью получать и сохранять два вида энергии, а именно «актуальную» энергию, зависящую от движения ее частей, и «потенциальную» энергию, представляющую собой работу, которую среда выполнит в силу своей упругости, возвращаясь к первоначальному состоянию, после того смещения, которое она испытала.

Распространение колебаний состоит в непрерывном преобразовании одной из этих форм энергии в другую попеременно, и в любой момент количество энергии во всей среде разделено поровну, так что половина энергии является энергией движения, а другая половина - энергией упругого напряжения.

(7) Среда, имеющая такого рода структуру, может быть способна к другим видам движения и смещения, чем те, которые обусловливают явления света и тепла; некоторые из них могут быть таковы, что они воспринимаются нашими чувствами при посредстве тех явлений, которые они производят.

(8) Сейчас мы знаем, что светоносная среда в отдельных случаях испытывает действие магнетизма, так как Фарадей 7 открыл, что в тех случаях, когда плоско поляризованный луч проходит через прозрачную диамагнитную среду в направлении магнитных силовых линий, образуемых магнитами или токами, то плоскость поляризации начинает вращаться.

Это вращение всегда происходит в том направлении, в котором положительное электричество должно проходить вокруг диамагнитного тела для того, чтобы образовать действующее магнитное поле.

Верде 8 с тех пор открыл, что если заменить диамагнитное тело парамагнитным, например раствором треххлористого железа в эфире, то вращение происходит в обратном направлении.

Профессор В. Томсон 9 Так указал, что никакое распределение сил, действующих между частями какой-либо среды, единственным движением которой является движение световых колебаний, недостаточно для объяснения этих явлений, но что мы должны допустить существование в среде движения, зависящего от намагничивания, в дополнение к тому колебательному движению, которое представляет собой свет.

Совершенно правильно, что вращение плоскости поляризации вследствие магнитного воздействия наблюдалось только в средах, обладающих заметной плотностью. Но свойства магнитного поля не так уж сильно изменяются при замене одной среды другой или вакуумом, чтобы позволить нам допустить, что плотная среда делает нечто большее, чем простое изменение движения эфира. Мы поэтому имеем законное основание поставить вопрос: не проходит ли движение эфирной среды везде, где бы ни наблюдались магнитные эффекты? Мы имеем некоторое основание предположить, что это движение является движением вращения, имеющим своей осью направление магнитной силы.

(9) Мы можем теперь обсудить другое явление, наблюдаемое в электромагнитном поле. Когда тело движется, пересекая линии магнитной силы, оно испытывает то, что называют электродвижущей силой; два противоположных конца тела электризуются противоположным образом, и электрический ток стремится пройти через тело. Когда электродвижущая сила достаточно велика и действует на некоторые химически сложные тела, она их разлагает и заставляет одну из компонент направляться к одному концу тела, а другую - в прямо противоположную сторону 10 .

В данном случае мы имеем очевидное проявление силы, вызывающей электрический ток вопреки сопротивлению и электризующей концы тела противоположным образом; это особое состояние тела поддерживается только воздействием электродвижущей силы, и как только эта сила устраняется, оно стремится с равной и противоположно направленной силой вызывать обратный ток через тело и восстановить его первоначальное электрическое состояние. Наконец, если эта сила достаточно велика, она разлагает химические соединения и перемещает компоненты в двух противоположных направлениях, в то время как их естественной тенденцией является тенденция к взаимному соединению с такой силой, которая может породить электродвижущую силу обратного направления.

Эта сила, следовательно, является силой, воздействующей на тело по причине его движения через электромагнитное поле или вследствие изменений, возникающих в самом этом поле; действие этой силы проявляется или в порождении тока и нагревании тела, или в разложении тела, или, если она не может сделать ни того, ни другого, то в приведении тела в состояние электрической поляризации - состояние вынужденное, при котором концы тела наэлектризованы противоположным образом и от которого тело стремится освободиться, как только будет удалена возмущающая сила.

(10) Согласно предлагаемой мною теории, эта «электродвижущая сила» является силой, возникающей при передаче движения от одной части среды к другой, так что именно благодаря этой силе движение одной части вызывает движение другой. Когда электродвижущая сила действует вдоль проводящего контура, она производит ток, который в том случае, если он встречает сопротивление, вызывает постоянное превращение электрической энергии в тепло; последнее уже нельзя восстановить в форме электрической энергии каким-либо обращением процесса.

(11) Но когда электродвижущая сила действует на диэлектрик, она создает состояние поляризации его частей, которое аналогично поляризации частей массы железа под влиянием; магнита и которое подобно магнитной поляризации может быть описано как состояние, в котором каждая частица имеет противоположные концы в противоположных состояниях 11 .

В диэлектрике, находящемся под действием электродвижущей: силы, мы можем представлять, что электричество в каждой молекуле так смещено, что одна сторона молекулы делается положительно наэлектризованной, а другая - отрицательно наэлектризованной, однако электричество остается полностью связанным с молекулой и не переходит от одной молекулы к другой.1 Эффект этого воздействия на всю массу диэлектрика выражается! в общем смещении электричества в определенном направлении. 12 Это смещение не равноценно току, потому что, когда оно достигает определенной степени, оно остается неизменным, но оно есть начало тока, и его изменения образуют токи в положительном или отрицательном направлениях сообразно тому, увеличивается или уменьшается смещение 12 . Внутри диэлектрика нет признаков какой-либо электризации, так как электризация поверхности любой молекулы нейтрализуется противоположной электриза цией поверхности молекулы, находящейся в соприкосновении с нею; но на граничной поверхности диэлектрика, где электризация не нейтрализуется, мы обнаруживаем явления, указывающие на положительную или отрицательную электризацию этой поверхности. Отношение между электродвижущей силой и величиной электрического смещения, которое оно вызывает, зависит от природы диэлектрика, причем та же самая электродвижущая сила обычно производит большее электрическое смещение в твердых диэлектриках, как, например, в стекле или сере, чем в воздухе.

(12) Здесь, таким образом, мы усматриваем еще один эффект электродвижущей силы, а именно электрическое смещение, которое согласно нашей теории является некоторым родом упругой податливости действию силы, похожей на ту, которая имеет место в сооружениях и машинах по причине несовершенной жесткости связей 13 .

(13) Практическое исследование индуктивной емкости диэлектриков 14 делается затруднительным вследствие двух мешающих явлений. Первое заключается в проводимости диэлектрика, которая, будучи во многих случаях исключительно малой, тем не менее не является совершенно неощутимой. Второе - явление, называемое электрической абсорбцией 15 и состоящее в том, что, когда диэлектрик подвергается воздействию электродвижущей силы, электрическое смещение постепенно увеличивается, а если электродвижущая сила устраняется, диэлектрик не возвращается моментально в свое первоначальное состояние, но разряжает только часть сообщенной ему электризации и, будучи предоставленным самому себе, постепенно приобретает электризацию на своей поверхности, тогда как внутренность диэлектрика постепенно деполяризуется. Почти все твердые диэлектрики обнаруживают это явление, которое объясняет остаточный заряд лейденской банки и некоторые явления в электрических кабелях, описанные Ф. Дженкиным 16 .

(14) Мы встречаемся здесь с двумя другими родами податливости, отличными от упругости идеального диэлектрика, которую мы сравнивали с идеально упругим телом. Податливость, которая относится к проводимостям, можно сравнить с податливостью вязкой жидкости (иначе говоря, жидкости, имеющей большое внутреннее трение) или мягкого тела, в котором малейшая сила производит постоянное изменение формы, увеличивающееся вместе со временем действия силы. Податливость, связанная с явлением электрической абсорбции, может быть сравнена с податливостью упругого тела клеточной структуры, содержащего густую жидкость в своих полостях. Такое тело, будучи подвергнутым давлению, сжимается постепенно, а когда давление устраняется, тело не сразу принимает свою прежнюю форму, потому что упругость материи тела должна постепенно преодолеть вязкость жидкости, прежде чем восстановится полное равновесие. Некоторые твердые тела, хотя и не имеют той структуры, о которой мы говорили выше, обнаруживают механические свойства такого рода 17 , и вполне возможно, что эти же самые вещества в качестве диэлектриков обладают аналогичными электрическими свойствами, а если они являются магнитными веществами, то обладают соответствующими свойствами, относящимися к приобретению, удержанию и потере магнитной полярности 18 .

(15) Поэтому кажется, что некоторые явления электричества и магнетизма приводят к тем же заключениям, что и оптические явления, а именно, что имеется эфирная среда, проникающая все тела и изменяемая только в некоторой степени их присутствием; что части этой среды обладают способностью быть приведенными в движение электрическими токами и магнитами; что это движение сообщается от одной части среды к другой при помощи сил, возникающих от связей этих частей; что под действием этих сил возникает определенное смещение, зависящее от упругости этих связей, и что вследствие этого энергия в среде может существовать в двух различных формах, одна из которых является актуальной энергией движения частей среды, а другая - потенциальной энергией, обусловленной связями частей в силу их упругости.

(16) Отсюда мы приходим к концепции сложного механизма, способного к обширному разнообразию движений, но в то же самое время связанного так, что движение одной части зависит, согласно определенным отношениям, от движения других частей, причем эти движения сообщаются силами, возникающими из относительного смещения связанных между собой частей вследствие упругости связей. Такой механизм должен подчиняться общим законам динамики, и мы должны иметь возможность вывести все следствия этого движения, предполагая, что известна форма отношения между движениями частей. (17) Мы знаем, что, когда электрический ток течет в проводящей цепи, прилегающая часть поля характеризуется известными магнитными свойствами, и если в поле находятся две цепи, магнитные свойства поля, относящиеся к обоим токам, комбинируются. Таким образом, каждая часть поля находится в связи с обоими токами, а оба тока связываются друг с другом в силу их связи с намагничиванием поля. Первым результатом этой связи, который я предлагаю изучить, является индукция одного тока другим и индукция вследствие движения проводников в поле.

Другим, вытекающим отсюда результатом является механическое взаимодействие между проводниками, по которым текут токи. Явление индукции токов было выведено из механического взаимодействия проводников Гельмгольцем 19 и Томсоном 20 . Я следовал обратному порядку и вывел механическое взаимодействие из законов индукции. Я затем описал экспериментальные методы определения величины L, М, N 21 , от которых зависят эти явления.

(18) Затем я прилагаю явления индукции и притяжения токов к исследованию электромагнитного поля и к установлению системы магнитных силовых линий, указывающих на их магнитные свойства. Исследуя то же самое поле при помощи магнита, я показываю распределение его эквипотенциальных магнитных поверхностей, пересекающих силовые линии под прямыми углами.

Чтобы ввести эти результаты в сферу символического исчисления 22 , я выражаю их в форме общих уравнений электромагнитного поля.

Эти уравнения выражают:
(A) Соотношение между электрическим смещением, током истинной проводимости и полным током, составленным из обоих.
(B) Соотношение между магнитными силовыми линиями и коэффициентами индукции цепи, как они уже выведены из законов индукции.
(C) Соотношение между силой тока и его магнитными действиями в соответствии с электромагнитной системой единиц.
(D) Значение электродвижущей силы в каком-либо теле, возникающей от движения тела в поле, изменения самого поля и изменения электрического потенциала от одной части поля к другой.
(E) Соотношение между электрическим смещением и электродвижущей силой, которая его производит.
(F) Соотношение между электрическим током и проводящей его электродвижущей силой.
(G) Соотношение между количеством свободного электричества в любой точке и электрическими смещениями в окрестности ее.
(Н) Соотношение между увеличением или уменьшением свободного электричества и электрическими токами поблизости Всего таких уравнений имеется 20, содержащих 20 переменных величин.

(19) Затем я выражаю через эти величины внутреннюю энергию электромагнитного поля, как зависящую частично от магнитной и частично от электрической поляризации в каждой точке 23 .

Отсюда я определяю действующую механическую силу, во-первых,- на подвижный проводник, по которому течет электрический ток; во-вторых,- на магнитный полюс; в-третьих,- на наэлектризованное тело.

Последний результат, а именно механическая сила, действующая на наэлектризованное тело, дает начало независимому методу электрического измерения, основанному на электрических действиях. Отношение между единицами, применяемыми в этих двух методах, оказывается зависящим от того, что я назвал «электрической упругостью» среды, и является скоростью, которая была экспериментально определена Вебером и Кольраушем.

Затем я показываю, как рассчитывать электростатическую емкость конденсатора и удельную индуктивную емкость диэлектрика.

Случай с конденсатором, состоящим из параллельных слоев веществ, обладающих различными электрическими сопротивлениями и индуктивными емкостями, изучается в дальнейшем и показывается, что именуемое электрической абсорбцией явление, вообще говоря, будет иметь место, т. е. если конденсатор будет внезапно разряжен, то через короткое время он обнаружит наличие остаточного заряда.

(20) Общие уравнения в дальнейшем применяются к случаю магнитного возмущения, распространяющегося через непроводящее поле, и показывается, что единственные возмущения, которые могут распространяться таким образом, это возмущения, поперечные к направлению распространения, и что скорость распространения является скоростью v , определенной экспериментальным путем из опытов, подобных опыту Вебера, которая выражает количество электростатических единиц электричества, содержащихся в одной электромагнитной единице.

Эта скорость так близка к скорости света, что, по-видимому, мы имеем серьезные основания сделать заключение, что сам по себе свет (включая лучистую теплоту и другие излучения) является электромагнитным возмущением в форме волн, распространяющихся через электромагнитное поле согласно законам электромагнетизма 24 . Если это так, то совпадение между упругостью среды, вычисленной, с одной стороны, из быстрых световых колебаний и, с другой стороны, найденной медленным процессом электрических экспериментов, показывает, как совершен ны и правильны должны быть упругие свойства среды, если она не заполнена какой-либо материей, более плотной, чем воздух. Если тот же самый характер упругости сохраняется в плотных прозрачных телах, то оказывается, что квадрат показателя преломления равен произведению удельной диэлектрической емкости и удельной магнитной емкости 25 . Проводящие среды быстро поглощают такие излучения и поэтому обычно являются непрозрачными.

Концепция распространения поперечных магнитных возмущений с исключением продольных определенно проводится профессором Фарадеем 26 в его «Мыслях о лучевых вибрациях». Электромагнитная теория света в том виде, в каком она предложена им, является такой же по существу, как и та, которую я развиваю в настоящем докладе, за исключением того, что в 1846 г. не имелось данных для расчета скорости распространения 27 .

(21) Общие уравнения затем применяются к расчету коэффициентов взаимной индукции двух круговых токов и коэффициента самоиндукции катушки.

Отсутствие равномерного распределения тока в различных частях сечения провода в момент начала течения тока, как я полагаю, исследуется впервые, и найдена соответствующая поправка для коэффициента самоиндукции.

Эти результаты применяются к расчету самоиндукции катушки, применяемой в опытах Комитета Британской ассоциации по стандартам электрического сопротивления, и полученные величины сравниваются с величинами, определенными опытным путем.

* В кн.: Д. К· Максвелл Избранные сочинения по теории электромагнитного поля. М, 1954, с. 251-264.
1 Royal Society Transactions, т. CLV, 1864
2 Вебер Вильгельм (1804-1891) - немецкий физик, вывел элементарный закон электродинамики дальнодействия; вместе с Кольраушем Рудольфом (1809-1858) впервые измерил в 1856 г. отношение электростатической и магнитной единиц заряда, оказавшееся равным скорости света (3- 108 м/с).
3 Electrodynamische Maassbestimmungen, Leipzig. Trans, т. 1, 1849 и Taylor"s Scientific Memoirs, т. V, глава XIV. »Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires electricas vel magneticas declinetur», Halis Saxonum, 1858.
4 Имеются в виду опыты Вебера и Кольрауша.
5 Гейслер Генрих (1814-1879)-немецкий физик, сконструировавший ряд физических приборов: ареометры, ртутные насосы, вакуумные трубки - так называемые гейслеровы трубки и др.
6 Томсон Вильям (лорд Кельвин) (1824-1907) -выдающийся английский физик, один из основателей термодинамики; ввел абсолютную шкалу температур, носящую его имя, развил теорию электрических колебаний, получив формулу периода колебательного контура, автор многих других открытий и изобретений, сторонник механистической картины физического мира. W. Thomson. «On the Possible Density of the Lumminiterous Medium and on the Mechanical Value oi a Cubis Mile of Sunlight», Transactions of the Royal Society of Edinburgh, c. 57, 1854.
7 Так Максвелл называет кинетическую энергию.
8 «Exp. Res.», серия XIX. Верде Эмиль (1824-1866) - французский физик, экспериментально обнаруживший пропорциональность магнитного вращения плоскости поляризации квадрату длины волны света. Verdet, Comptes rendus, 1856, второе полугодие, с 529 и 1857, первое полугодие, с. 1209.
9 Так W. Thomson, Proceedings of the Royal Society, июнь 1856 и июнь 1861.
10 Максвелл придерживается устаревших представлений о разложении электролитов электрическим полем.
11 Faraday, «Exp. Res », серия XI; Mossotti, Mem. della Soc. Italina (Mode-па), т. XXIV, часть 2, с. 49.
12 Здесь Максвелл вводит понятие тока смещения.
13 В иллюстративных целях используются модели теории упругости.
14 Так Максвелл называет диэлектрическую проницаемость вещества.
15 Faraday, «Exp Res» (1233-1250).
16 F. Jenkm Reports of the British Association, 1859, c. 248, а также Report of Committee of Board of Trade on Submarine Cables, c. 136 и 464.
17 Как, например, состав из клея, патоки и т. п., из которого делаются небольшие пластические фигурки, которые, будучи деформированы, лишь постепенно приобретают свои первоначальные очертания.
18 Еще один пример того, как Максвелл использует аналогии из теории упругости.
19 Русское издание, Гельмгольц. «О сохранении силы». М., 1922.
20 W. Thomson. Reports of the British Association, 1848; Phil. Mag., декабрь 1851.
21 L, M, N - некоторые геометрические величины, введенные Максвеллом для описания зависимости взаимодействия проводников с током: L зависит от формы первого проводника, N - от формы второго, а М - от относительного положения этих проводников.
22 Это «символическое исчисление» заимствовано из работ Гамильтона по векторному и операторному анализу.
23 Эти уравнения в современном виде (в СИ) выглядят так: (А)-это не уравнение, а определение вектора плотности полного тока:
24 Здесь Максвелл подчеркивает электромагнитную природу света.
25 Т. е. п2 = е|л.
26 Phil. Mag., май 1846 г. или «Exp. Res.», т. III.
27 Первые надежные значения величины скорости света были получены в опытах И. Физо (1849) и Л. Фуко (1850).