Организация пространства. Советы и идеи. Сад и участок

Космические процессы. Космические процессы и их влияние на землю

Первые активные шаги к познанию космоса человечество сделало совсем недавно. От запуска первого космического аппарата с первым спутником на борту прошло всего лишь каких-то 60 лет. Но за этот небольшой исторический отрывок времени удалось узнать о многих космических явлениях и провести большое количество самых разнообразных исследований.

Как ни странно с более глубоким познанием космоса перед человечеством открывается все больше загадок и явлений, которые не имеют на данном этапе ответов. Стоит отметить, что даже самое близкое космическое тело, а именно Луна еще далеко не изучена. В силу несовершенства технологий и космических аппаратов мы не имеем ответов на огромное количество вопросов, которые касаются космического пространства. Все же наш портал сайт сможет ответить на много интересующих Вас вопросов и поведать очень много интересных фактов о космических явлениях.

Самые необычные космические явления от портала сайт

Достаточно интересным космическим явлением является галактический каннибализм. Несмотря на то, что галактики являются неживыми существами, все же с термина можно сделать вывод, что в основе его положено поглощение одной галактикой другую. Действительно, процесс поглощения себе подобных характерен не только для живых организмов, но и для галактик. Так, в настоящее время совсем недалеко от нашей галактики происходит подобное поглощение Андромедой более мелких галактик. По счету в этой галактике порядка десяти подобных поглощений. Среди галактик подобные взаимодействия достаточно распространенные. Также довольно часто кроме каннибализма планет может происходить их столкновение. При исследовании космических явлений смогли сделать вывод, что почти все изученные галактики когда-либо имели контакт с другими галактиками.

Еще одним интересным космическим явлением можно назвать квазары. Под этим понятием подразумевают своеобразные космические маяки, которые можно обнаружить с применением современного оборудования. Они раскиданы во всех отдаленных частях нашей Вселенной и свидетельствуют о зарождении всего космоса и его объектов. Особенностью этих явлений можно назвать то, что они излучают огромное количество энергии, по своей мощи она больше чем энергия, которую излучают сотни галактик. Еще в начале активного изучения космического пространства, а именно в начале 60-х годов было зафиксировано много объектов, которые считали квазарами.

Их основной характеристикой является мощное радиоизлучение и достаточно малые размеры. С развитием технологий стало известно, что только 10% от всех объектов, которые считали квазарами, действительно были этими явлениями. Остальные 90% практически не излучали радиоволны. Все объекты, относящиеся к квазарам, имеют очень мощное радиоизлучение, которое и могут фиксировать специальные приборы землян. Все же о данном явлении известно очень мало, и они остаются загадкой для ученых, по этому поводу выдвинуто масса теорий, но научных фактов об их происхождении не существует. Большинство склонно считать, что это зарождающиеся галактики, в середине которых находится огромная черная дыра.

Очень известным и в то же время неизученным явлением космоса является темная материя. Много теорий гласят о ее существовании, но ни одному ученому не удалось не то чтобы ее увидеть, но и зафиксировать с помощью приборов. Все же принято считать, что в космосе существуют определенные скопления этой материи. Для того чтобы провести исследования подобного явления человечество еще не владеет нужным оборудованием. Темная материя, по мнению ученых, образована с нейтрино или невидимых черных дыр. Существуют мнения и о том, что никакой темной материи не существует вовсе. Зарождение гипотезы о присутствии во Вселенной темной материи было выдвинуто за счет несоответствий гравитационных полей, также изучено, что плотность космических пространств неоднородная.

Для космического пространства также характерны гравитационные волны, эти явления также очень мало изучены. Под этим явлением принято считать искажения временного континуума в космосе. Об этом явлении было предсказано еще очень давно Эйнштейном, где он говорил о ней в своей известной теории относительности. Движение подобных волн происходит со скоростью света, а уловить их присутствие крайне сложно. На данном этапе развития мы можем их наблюдать только во время достаточно глобальных изменений в космосе, например, при слиянии черных дыр. И то наблюдение даже за такими процессами возможно только с применением мощных гравитационно-волновых обсерваторий. Нужно отметить, что зафиксировать эти волны возможно при излучении двух мощных взаимодействующих объектов. Наиболее качественно гравитационные волны можно фиксировать при контакте двух галактик.

Совсем недавно стало известно об энергии вакуума. Это подтверждает теории о том, что межпланетное пространство не пусто, а занято субатомными частицами, которые постоянно подвергаются разрушениям и новым образованиям. В подтверждение существования энергии вакуума выступает наличие энергии космоса антигравитационного порядка. Все это и приводит в движение космические тела и объекты. Это порождает еще одну загадку о значении и цели движения. Ученые даже пришли к выводу, что энергия вакуума очень велика, просто человечество еще не научилось ее использовать, мы привыкли получать энергию с веществ.

Все эти процессы и явления открыты для изучения в настоящее время, наш портал сайт поможет Вам ознакомиться с ними более детально и сможет дать много ответов на интересующие Вас вопросы. Мы владеем детальной информацией обо всех изученных и малоизученных явлениях. Также мы обладаем передовой информацией обо всех исследованиях космического пространства, которые проходят в настоящее время.

Интересным и достаточно неизученным космическим явлением можно назвать и микро черные дыры, которые были выявлены совсем недавно. Теория о существования черных дыр очень малого размера в начале 70-х годов прошлого века чуть полностью не перевернула всеми принятую теорию о большом взрыве. Считается, что микродыры расположены по всей Вселенной и имеют особую связь с пятым измерением, кроме того, они имеют свое влияние на временное пространство. Для изучения явлений, связанных с черными дырами малого размера, должен был помочь Адронный Коллайдер, но экспериментально подобные исследования крайне сложные даже с применением этого устройства. Все же ученые не оставляют изучения этих явлений и в ближайшее время планируется их детальное исследование.

Кроме маленьких черных дыр, известны такие явления, которые достигают гигантских размеров. Они отличаются высокой плотностью и сильным гравитационным полем. Гравитационное поле черных дыр настолько мощное, что даже свет не может вырваться от этого притягивания. Они очень часто встречаются в космическом пространстве. Черные дыры имеются практически в каждой галактике, причем их размеры могут превышать в десятки миллиардов раз размеры нашей звезды.

Люди, которые интересуются космосом и его явлениями обязаны быть знакомыми с понятием нейтрино. Эти частицы загадочны в первую очередь за счет того, что они не имеют собственного веса. Их активно используют для преодоления плотных металлов таких, как свинец, поскольку они практически не взаимодействуют с самим веществом. Они окружают все в космосе и на нашей планете, они с легкостью проходят через все вещества. Даже через тело человека проходит 10^14 нейтрино каждую секунду. В основном эти частицы выпущены при излучении Солнца. Все звезды являются генераторами этих частиц, также они активно выбрасываются в космическое пространство при взрывах звезд. Чтобы зафиксировать излучения нейтрино, ученые размещали на дне морей большие нейтрино-детекторы.

Немало загадок связано и с планетами, а именно со странными явлениями, которые с ними связаны. Существуют экзопланеты, которые расположены далеко от нашей звезды. Интересным фактом можно назвать то, что еще до 90-х годов прошлого века человечество считало, что планет вне нашей солнечной системы существовать не может, но это совершенно неверно. Даже в начале нынешнего года насчитывается порядка 452 экзопланет, которые размещены в различных планетных системах. Тем более что все известные планеты имеют самые разнообразные размеры.

Они могут быть как карликовыми, так и огромными газовыми гигантами, которые имеют размер как звезды. Ученые упорно ищут планету, которая напоминала бы нашу Землю. Эти поиски пока не увенчались успехом, поскольку сложно найти планету, которая имела бы такие размеры и подобную по составу атмосферу. При этом для возможного зарождения жизни необходимы и оптимальные условия температуры, что также очень сложно.

Анализируя все явления изучаемых планет, позволило в начале 2000-х обнаружить подобную планету нашей, но все же она имеет значительно большие размеры, а оборот вокруг своей звезды она проделывает почти за десять суток. В 2007 году была открыта еще одна подобная экзопланета, но и она имеет большие размеры, а год на ней проходит за 20 суток.

Исследования космических явлений и экзопланет, в частности, позволило осознать астронавтам о существовании огромного количества других планетных систем. Каждая открытая система дает ученым новый объем работ на изучение, поскольку каждая система отличается от другой. К сожалению, еще несовершенные методы исследований не могут раскрыть нам все данные о космическом пространстве и его явлениях.

На протяжении почти 50 лет астрофизики занимаются изучением открытого в 60-х годах слабого радиационного излучения. Это явление называют микроволновым фоном космоса. Также это излучение часто обозначают в литературе как реликтовое излучение, которое осталось после большого взрыва. Как известно, этот взрыв и положил начало формированию всех небесных тел и объектов. Большинство теоретиков при отстаивании теории большого взрыва используют этот фон как доказательство своей правоты. Американцам удалось даже измерить температуру данного фона, которая составляет 270 градусов. Ученые после этого открытия были удостоены Нобелевской премии.

Говоря о космических явлениях, просто невозможно не упомянуть об антиматерии. Эта материя находится как бы в постоянном сопротивлении к обычному миру. Как известно, отрицательные частички имеют своего положительно заряженного близнеца. Также и антивещество имеет в противовес позитрон. За счет всего этого при столкновении антиподов происходит выброс энергии. Часто в научной фантастике встречаются фантастические идеи, в которых космические корабли имеют силовые установки, работающие за счет столкновения античастиц. Интересных подсчетов удалось достичь физикам, по которым при взаимодействии одного килограмма антиматерии с килограммом обычных частиц будет выделено такое количество энергии, которое сопоставимо с энергией взрыва очень мощной ядерной бомбы. Принято считать, что обычная материя и антиматерия имеют подобное строение.

В силу этого возникает вопрос о таком явлении, почему большинство космических объектов состоят из вещества? Логичным ответом было бы то, что где-то во Вселенной существуют такие же скопления антивещества. Ученые, отвечая на подобный вопрос, отталкиваются от теории большого взрыва, при котором в первые секунды возникла подобная асимметрия в распределении веществ и материи. Ученым в лабораторных условиях удалось получить небольшое количество антиматерии, которого достаточно для дальнейшего исследования. Нужно отметить, что полученное вещество является самым дорогим на нашей планете, поскольку один его грамм стоит 62 триллиона долларов.

Все приведенные выше космические явления являются самой малой частичкой всего интересного о космических явлениях, с которыми Вы можете ознакомиться на портале сайт. Мы также имеем много фотографий, видео и другой полезной информации о космическом пространстве.

Космические процессы и минералообразование

А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Бывают разных форм и размеров, однако совсем недавно астрономами был обнаружен совершенно новый тип этих космических объектов: пушистые и дымчатые, как облака, сверхрассеянные галактики содержат невероятно низкое количество звезд. Например, в недавно обнаруженной сверхрассеянной галактике протяженностью 60 тысяч световых лет (что примерно равно размеру нашему Млечному Пути) содержится всего 1 процент звезд.

К настоящему моменту, благодаря совместной работе телескопа Кека, а также аппаратов Dragonfly Telephoto Array, астрономы открыли 47 сверхрассеянных галактик. Они обладают настолько низким процентом содержащихся в них звезд, что ночное небо здесь казалось бы совершенно пустым.

Эти космические объекты настолько необычны, что астрономы до сих пор не уверены в том, как они вообще могли сформироваться. Вероятнее всего, сверхрассеянные галактики являются так называемыми несостоявшимися галактиками, у которых в момент их формирования закончился галактический материал (газ и пыль). Возможно, эти галактики когда-то были частью более крупных галактик. Но больше всего ученых поражает тот факт, что сверхрассеянные галактики были обнаружены в скоплении Кома — регионе космоса, наполненном темной материей и галактиками, обладающими колоссальными скоростями вращения. Учитывая эти обстоятельства, можно предположить, что сверхрассеянные галактики когда-то в буквальном смысле были разорваны в клочья гравитационным безумием, творящимся в этом уголке космоса.

«Самоубийство» астероида

Космический телескоп «Хаббл» недавно стал очевидцем очень редкого космического явления — спонтанного разрушения астероида. Обычно к такому стечению обстоятельств приводят космические столкновения или же слишком близкое приближение к более крупным космическим телам. Однако разрушение астероида P/2013 R3 под воздействием солнечного света оказалось для астрономов несколько неожиданным явлением. Нарастающее воздействие солнечного ветра привело к вращению R3. В какой-то момент это вращение достигло критической точки и разломило астероид на 10 крупных кусков весом около 200 000 тонн. Неторопливо отдаляющиеся друг от друга со скоростью 1,5 километра в секунду куски астероида выбросили невероятное количество мелких частиц.

Рождение звезды

Ведя наблюдение за объектом W75N(B)-VLA2, астрономы стали свидетелями формирования нового небесного тела. Расположенный всего в 4200 световых лет от нас объект VLA2 был впервые обнаружен в 1996 году радиотелескопом VLA (радиотелескоп с очень большой антенной системой), расположенным в обсерватории Сан-Августин в Нью-Мексико. Во время своего первого наблюдения ученые отметили плотное облако газа, испускаемое крошечной молодой звездой.

В 2014 году при очередном наблюдении объекта W75N(B)-VLA2 ученые отметили явные изменения. За столь небольшой с астрономической точки зрения срок небесное тело изменилось, однако эти метаморфозы и не противоречили ранее созданным научно прогнозируемым моделям. За прошедшие 18 лет сферическая форма окружавшего звезду газа приобрела более вытянутую форму под воздействием накопленной пыли и космических обломков, фактически создав своеобразную колыбель.

Необычная планета с невероятными температурными изменениями

Космический объект 55 Cancri E получил прозвище «алмазная планета», потому что практически полностью состоит из кристаллического алмаза. Однако недавно ученые обнаружили еще одну необычную особенность этого космического тела. Разность температуры на планете может спонтанно меняться на 300 процентов, что просто невообразимо для планеты подобного типа.

55 Cancri E является, пожалуй, самой необычной планетой внутри своей системы, состоящей из пяти других планет. Она невероятно плотная, а ее полный период оборота вокруг звезды занимает 18 часов. Под воздействием сильнейших приливных сил родной звезды планета обращена к ней только одной своей стороной. Так как температура на ней может изменяться от 1000 тысячи градусов до 2700 градусов Цельсия, ученые предполагают, что планета может быть покрыта вулканами. С одной стороны, это могло бы объяснить столь необычные температурные изменения, с другой — опровергнуть гипотезу о том, что планета представляет собой гигантский алмаз, потому что в таком случае уровень содержащегося углерода не будет соответствовать требуемому.

Вулканическая гипотеза поддерживается доказательствами, обнаруженными в нашей собственной Солнечной системе. Спутник Юпитера Ио очень похож на описываемую планету, и приливные силы, направленные на этот спутник, превратили его в один сплошной гигантский вулкан.

Самая странная экзопланета — Kepler 7b

Газовый гигант Kepler 7b — это настоящее откровение для ученых. Сначала астрономов поразила невероятная «тучность» планеты. Она примерно в 1,5 раза больше Юпитера, но при этом обладает гораздо меньшей массой, что могло бы означать, что ее плотность сопоставима с плотностью пенопласта.

Эта планета могла бы с легкостью находиться на поверхности океана, если, конечно, возможно было бы найти океан с таким размером, который смог бы ее уместить. Кроме того, Kepler 7b является первой экзопланетой, для которой была создана карта облачности. Ученые выяснили, что температура на ее поверхности может достигать 800-1000 градусов Цельсия. Жарко, но не настолько, насколько ожидалось. Дело в том, что Kepler 7b расположена ближе к своей звезде, чем Меркурий расположен к Солнцу. После трех лет наблюдения за планетой ученые выяснили причины этих нестыковок: облака в верхних слоях атмосферы отражают излишнее тепло от звезды. Еще более интересным оказался факт того, что одна сторона планеты всегда покрыта облаками, тогда как другая всегда остается чистой.

Тройное затмение на Юпитере

Обычное затмение не такое уж и редкое явление. И все же солнечное затмение является удивительным стечением обстоятельств: диаметр солнечного диска в 400 раз больше Луны, и в этот момент Солнце находится в 400 раз дальше от нее. Случилось так, что Земля является идеальным местом для того, чтобы наблюдать за этими космическими событиями.

Солнечные и лунные затмения — это действительно красивые явления. Но по части зрелищности тройное затмение на Юпитере их переигрывает. В январе 2015 года телескоп «Хаббл» поймал в объектив своей камеры три Галилеевых спутника — Ио, Европу и Каллисто, — выстроившихся в ряд перед своим «газовым папочкой» Юпитером.

Любой, находящийся в тот момент на Юпитере, мог бы стать свидетелем психоделического тройного Солнечного затмения. Следующее подобное явление произойдет не раньше 2032 года.

Гигантская звездная колыбель

Звезды часто находятся в группах. Большие группы называются шаровыми звездными скоплениями, и в них может содержаться до одного миллиона звезд. Такие скопления разбросаны по всей Вселенной, и по крайней мере 150 из них находятся внутри Млечного Пути. Все они настолько древние, что ученые даже не могут предположить принцип их формирования. Однако совсем недавно астрономы обнаружили очень редкий космический объект — очень молодое шаровое скопление, заполненное газом, но при этом не имеющее звезд внутри него.

Глубоко среди группы галактик Antennae, расположенных в 50 миллионах световых лет от нас, имеется газовое облако, чья масса эквивалентна 50 миллионам Солнц. Это место в скором времени станет «яслями» для многих молодых звезд. Астрономы впервые обнаружили такой объект, и поэтому они сравнивают его с «яйцом динозавра, которое должно вот-вот вылупиться». С технической точки зрения это «яйцо» могло «вылупиться» уже давно, так как, предположительно, подобные регионы космоса остаются беззвездными в течение всего около одного миллиона лет.

Важность открытия таких объектов колоссальна. Так как они могут объяснить одни из самых древних и пока необъяснимых процессов во Вселенной. Вполне возможно, именно такие регионы космоса становятся своеобразными колыбелями невероятно красивых шаровых скоплений, за которыми мы сейчас можем наблюдать.

Редкое явление, которое помогло решить загадку космической пыли

Стратосферная обсерватория ИК-астрономии (SOFIA) аэрокосмического агентства NASA установлена прямо на борту модернизированного самолета Boeing 747SP и предназначена для изучения различных астрономических событий. На высоте 13 километров над поверхностью Земли содержится меньше атмосферного водяного пара, который бы создавал помехи в работе инфракрасного телескопа.

Недавно телескоп SOFIA помог астрономам решить одну из космических загадок. Наверняка многие из вас, смотревшие различные передачи о космосе, знают, что все мы, как и все во Вселенной, состоит из звездной пыли, а точнее из тех элементов, из которых она же и состоит. Однако ученые долго не могли понять, как эта звездная пыль не испаряется под воздействием сверхновых звезд, которые разносят ее через всю Вселенную.

Рассматривая своим инфракрасным глазом сверхновую звезду Sagittarius A East возрастом 10 000 лет, телескоп SOFIA обнаружил, что собирающиеся плотные области из газа вокруг звезды играют своего рода роль подушек, отталкивающих частицы космической пыли, защищая их от воздействия выделенного при взрыве тепла и ударной волны.

Даже если 7-20 процентов космической пыли смогло пережить встречу с Sagittarius A East, то ее будет вполне достаточно для формирования около 7000 космических объектов размеров с Землю.

Столкновение метеора Персеиды с Луной

Ежегодно с середины июля и примерно до конца августа в ночном небе можно наблюдать метеорный дождь Персеиды, однако начать свое наблюдение за этим космическим явлением лучше всего с наблюдения за Луной. 9 августа 2008 года астрономы-любители так и сделали, став свидетелями незабываемого события — ударного падения метеоритов на наш естественный спутник. Ввиду отсутствия у последней атмосферы, падение метеоритов на Луну происходит довольно регулярно. Однако падение метеоров Персеиды, которые, в свою очередь, являются осколками медленно гибнущей кометы Свифта-Туттля, ознаменовалось особенно яркими вспышками на лунной поверхности, которые можно было увидеть любому желающему, у кого имеется даже самый простенький телескоп.

С 2005 года NASA стало свидетелем около 100 подобных падений метеоритов на Луну. Такие наблюдения могут однажды помочь в разработке методов предсказывания будущих метеоритных ударов, а также средств защиты будущих астронавтов и лунных колонистов.

Карликовые галактики, содержащие больше звезд, чем огромные галактики

Карликовые галактики — это удивительные космические объекты, которые доказывают нам то, что размер не всегда имеет значение. Астрономы уже проводили исследования, чтобы выяснить скорость формирования звезд в средних и крупных галактиках, однако о крошечных галактиках в этом вопросе до недавнего времени был пробел.

После того как космический телескоп «Хаббл» предоставил инфракрасные данные о карликовых галактиках, за которыми он наблюдал, астрономы были удивлены. Оказалось, что звездообразование в крошечных галактиках происходит гораздо быстрее звездообразования в более крупных галактиках. Удивляет это тем, что в более крупных галактиках содержится больше газа, который требуется для появления звезд. Тем не менее в крошечных галактиках за 150 миллионов лет образуется столько же звезд, сколько образуется в галактиках стандартного и более крупного размеров примерно за 1,3 миллиарда лет тяжелой и интенсивной работы местных гравитационных сил. И что интересно, ученые пока не знают, почему карликовые галактики оказываются настолько плодовитыми.

А.Г.Жабин, доктор геолого-минералогических наук

В кристаллах минералов, горных породах, слоистых толщах осадков фиксируются и миллиарды лет сохраняются признаки, характеризующие не только эволюцию самой Земли, но и ее взаимодействие с космосом.

Земные и космические явления.

В геологических объектах языком физических и химических свойств записана своеобразная генетическая информация о воздействии космических процессов на Землю. Говоря о методе извлечения этой информации, известный шведский астрофизик Х. Альвен утверждает следующее:

"Поскольку никто не может знать, что произошло 45 млрд. лет тому назад, мы вынуждены начинать с современного состояния Солнечной системы и шаг за шагом восстанавливать все более и более ранние стадии ее развития, Этот принцип, выдвигающий на первый план ненаблюдаемые явления, лежит в основе современного подхода к изучению геологической эволюции Земли; его девиз: "настоящее есть ключ к прошлому".

В самом деле, сейчас уже можно качественно диагностировать многие виды внешнего космического влияния на Землю. О столкновении ее с гигантскими метеоритами свидетельстеуют астроблемы на земной поверхности (Земля и Вселенная, 1975, 6, с. 13-17.-Ред.), появление более плотных видов минералов, смещение и плавление различных пород. Диагностировать можно также космическую пыль и проникающие космические частицы. Интересно исследовать связь тектонической активности планеты с различными хроноритмами (временнЫми ритмами), обусловленными космическими процессами, такими, как солнечная активность, вспышки сверхновых звезд, движение Солнца и Солнечной системы в Галактике.

Обсудим вопрос, можно ли выявить космогенные хроноритмы в свойствах земных минералов. Ритмический и масштабный, - охватывающий всю планету характер солнечной активности и других космофизических факторов может служить основой общепланетарных "реперов" времени. Поэтому поиски и диагностика материальных следов подобных хроноритмов можно рассматривать как новое перспективное направление. В нем совместно используются изотопный (радиологический), биостратиграфический (на основе ископаемых остатков животных и растений) и космогенноритмический методы, которые в своем развитии будут дополнять друг друга. Исследования в этом направлении уже начались: описаны астроблемы, в соляных толщах обнаружены слои, содержащие космическую пыль, установлена периодичность кристаллизации веществ в пещерах. Но если в биологии и биофизике в последнее время возникли новые специальные разделы косморитмология, гелиобиология, биоритмология, дендрохронология, то минералогия пока еще отстает от подобных исследований.

Периодические ритмы.

Особое внимание сейчас обращается на поиски возможных форм фиксации в минералах 11-летнего цикла солнечной активности. Этот хроноритм фиксируется не только на современных, но и на палеообъектах в глинисто-песчаных осадках фанерозоя, в водорослях СоIIеniа из ордовика (500 млн. лет тому назад), на срезах ископаемых пермских (285 млн. лет) окаменелых деревьев. Отражение подобной космогенной ритмичности на минералах, выросших на нашей планете в зоне гипергенеза, то есть в самой верхней части земной коры, мы только начинаем искать. Но несомненно, что климатическая периодичность космогенной природы будет проявляться через различную интенсивность циркуляции поверхностных и грунтовых вод (чередование засух и обводнений), различный прогрев верхней пленки земной коры, через изменение скорости разрушения гор, осадконакопления (Земля и Вселенная, 1980, 1, с.2-6. - Ред.). А все эти факторы влияют на земную кору.

Наиболее перспективные места для поиска признаков подобных космогенных хроноритмов это кора выветривания, карстовые пещеры, зоны окисления сульфидных месторождений, осадки соляного и флишевого типа (последние представляют собой слоистое чередование пород разного состава, обусловленное колебательными движениями земной коры), так называемые ленточные глины, связанные с периодическим таянием ледников.

Приведем несколько примеров периодичности, зафиксированной при росте кристаллов минералов. Хорошо изучены кальцитовые сталактиты (СаСО3) из пещер Зауерланда (ФРГ). Установлено, что средняя толщина нарастающего на них каждый год слоя весьма мала, всего 0,0144 мм. (скорость роста примерно 1 мм. за 70 лет), а общий возраст сталактита около 12000 лет. Но на фоне зон, или оболочек, с годовой периодичностью на сталактитах обнаружены и более толстые зоны, которые нарастали через 10 - 11 -летние промежутки. Другой пример кристаллы целестина (SгSO4) размером до 10 см, выросшие в пустотах среди силурийских доломитов Огайо (США). В них обнаружена весьма тонкая хорошо выдержанная зональность. Мощность одной пары зон (светлой и темной) колеблется от З до 70 мкм., но в некоторых местах, где имеется много тысяч таких пар, мощность более стабильная 7,5 - 10,6 мкм. Микрозондом удалось определить, что светлые и темные зоны различаются по величине отношения Sr/Ва и кривая имеет пульсирующий характер (осадочные доломиты к моменту их выщелачивания и образования пустот стали полностью окаменевшими). После рассмотрения возможных причин возникновения подобной зональности предпочтение было отдано годовой периодичности условий кристаллизации. По-видимому, теплые и горячие хлоридные воды, содержащие Sr и Ва (температура вод колеблется от 68 до 114С) и имеющие направление движения в недрах Земли вверх, периодически, раз в году, разбавлялись поверхностными водами. В результате могла возникнуть тонкая зональность кристаллов целестина.

Исследование тонкослоистых корок сфалерита из Теннеси (США), найденных в пределах рудного месторождения Пайн Пойнт, также показало периодичность нарастания оболочек, или зон, на этих корках. Мощность их около 5 - 10 мкм., причем более толстые чередуются через 9 - 11 тонких зон. Годовая периодичность в этом случае объясняется тем, что проникающие в рудное месторождение грунтовые воды изменяют объем и состав растворов.

Тонкая годичная зональность имеется также в агате, растущем в приповерхностном слое земной коры. В описаниях агатов, сделанных еще в прошлом веке, отмечается иногда до 17000 тонких слоев в одном дюйме. Таким образом, одиночная зона (светлая и темная полоса) имеет мощность всего 1,5 мкм. Столь медленную кристаллизацию минералов агата интересно сравнить с ростом конкреций в океане. Эта скорость 0,03 - 0,003 мм. за тысячу лет, или 30 - 3 мкм. в год. По-видимому, в приведенных примерах обнаруживается сложная цепь взаимосвязанных явлений, обусловливающих влияние 11-летнего цикла солнечной активности на рост кристаллов минералов в поверхностном слое земной коры. Вероятно, изменение метеорологических условий под действием солнечного корпускулярного излучения проявляется, в частности, и в колебаниях обводненности верхних участков земной коры.

Вспышки сверхновых.

Помимо годовых и 11-летних хроноритмов существуют одиночные космогенные "реперы" времени. Здесь мы имеем в виду вспышки сверхновых звезд. Ленинградский ботаник Н. В. Ловеллиус изучил структуру годичных колец 800-летнего дерева арчи, растущего на высоте 3000 м на одном из склонов Зеравшанского хребта. Он обнаружил периоды, когда прирост годичных колец замедлялся. Эти периоды почти точно падают на 1572 и 1604 годы, когда в небе вспыхивали сверхновые звезды: сверхновая Тихо Браге и сверхновая Кеплера. Нам пока не известны геохимические и минералогические следствия интенсивных потоков космических лучей в связи с пятью вспышками сверхновых, происшедшими в нашей Галактике за последнее тысячелетие (1006, 1054, 1572, 1604, 1667 годы), и мы пока не умеем диагностировать подобные признаки. Важно здесь не столько видеть следы первичных космичеких лучей в земных минералах (тут кое-что уже известно), сколько найти метод определения интервалов времени, когда в прошлом космические лучи особенно интенсивно воздействовали на нашу планету. Такие интервалы времени, синхронизированные по всей Земле, можно будет сравнить с повсеместно распространенными слоями известного возраста маркирующими стратиграфическими горизонтами. По мнению астрофизиков, за время существования Земли около десяти раз ближайшие к Солнцу звезды вспыхивали как сверхновые. Таким образом, природа дает в наше распоряжение минимум десять последовательных хронореперов, единых для всей планеты. Минералогам же предстоит найти следы подобных космогенных временных реперов в свойствах кристаллов минералов и слагаемых ими горных пород. В качестве примера можно привести лунный реголит. В нем отражена история воздействия на Луну солнечного ветра, галактических космических лучей, микрометеоритов. Причем крупные космогенные хроноритмы здесь должны проявляться более контрастно ведь Луна не имеет атмосферы, и, значит, космические воздействия на нее не так сильно искажаются. Исследование реголита показало, что интенсивность протонного облучения на Луне с 1953 по 1963 год в четыре раза превышала среднюю интенсивность для нескольких предшествующих миллионов лет.

Идея о причинной связи периодичности геологических процессов на Земле с периодичностью взаимодействия Земли и Космоса все более проникает в сознание геологов и планетологов. Теперь стало ясно, что периодизация геологической истории, геохронологии связана с солнечной деятельностью единством временнОй структуры. Но недавно получены новые данные. Оказалось, что общепланетарные тектоно-магматические (минералогические) эпохи коррелируют с длительностью галактического года. Например, для послеархейского времени удалось установить девять максимумов отложения минерального вещества. Они имели место примерно 115, 355, 530, 750, 980, 1150, 1365, 1550 и 1780 млн. лет назад. Интервалы между этими максимумами составляют 170 - 240 млн. лет (в среднем 200 млн. лет), то есть равны длительности галактического года.

Член-корреспондент АН СССР Г. Л. Поспелов, анализируя место геологии в естествознании, отметил, что изучение многоступенчатых геологических комплексов приведет эту науку к открытию явлений типа "квантования" различных процессов в макромире. Минералоги вместе с геологами-стратиграфами, астрогеологами, астрофизиками собирают факты, которые в будущем позволят составить общую для всех планет Солнечной системы шкалу времени.

Космические явления и процессы - события космического происхождения, связывающее или могущее оказать поражающее воздействие на людей, с/х животных и растения, объекты экономики и окружающую природную среду. Такими космическими явлениями могут быть падения космических тел и опасные космические излучения.

У человечества есть враг опаснее, чем ядерная бомба, глобальное потепление или СПИД. В настоящее время известно около 300 космических тел, которые могут пересекать орбиту земли. В основном это астероиды размером от 1 до 1000км. Всего в космосе обнаружено около 300тыс астероидов и комет. До последнего момента мы можем ничего не узнать о приближающей катастрофе. Ученые астрономы признали: самые современные системы слежения за космосом очень слабы. В любой момент прямо из космической бездны может «вынырнуть» астеройд – убийца, стремительно приближающийся к Земле и наши телескопы обнаружат его лишь тогда, когда будет уже слишком поздно.

За всю историю земли известны столкновения с космическими телами диаметром от 2 до 100км, которых было более 10.

Справка: Утром 30 июня 1908 года жители Восточной Сибири были поражены ужасающим видением – на небе появилось второе солнце. Оно возникло внезапно и на какое - то время затмило привычный дневной свет. Это странное новое «солнце с удивительной скоростью двигалось по небосводу. Через несколько минут, окутанное черным дымом, оно с диким ревом упало за линию горизонта. В то же мгновение над тайгой взметнулся огромный огненный столб и раздался грохот чудовищного взрыва, который был слышен за сотни и сотни верст. Ужасающий жар, мгновенно распространившийся от места взрыва, был так силен, что даже за десятки верст от эпицентра, на людях начала тлеть одежда. В результате падения Тунгусского метеорита, было опустошено 2500кв. км (это составляет 15 территорий Княжества Лихтенштейн) тайги в бассейне реки Подкаменная Тунгуска. Его взрыв был эквивалентен 60 млн. т. тротилового эквивалента. И это при том, что его диаметр составлял всего лишь 50 – 60м. Если бы он прилетел на 4 часа позже, то от Санкт – Петербурга остались бы рожки да ножки.

В штате Аризона, имеется кратер диаметром 1240м и глубиной 170м.

Потенциально опасным считается примерно 125 небесных тел, наиболее опасным является астеройд №4 «Апофис», который 13 апреля 2029г. может врезаться в землю. Скорость его составляет 70км/сек, диаметр 320м, вес 100млрд. т.

Недавно ученые обнаружили астеройд 2004 VD17, который имеет в диаметре примерно 580м и весит1млрд. т., вероятность его столкновение с землей выше в 5 раз, и это столкновение возможно уже в 2008 году.



Чрезвычайные и экстремальные ситуации , вызванные температурно-влажностным состоянием среды.

Во время перепада температуры и влажности воздуха, а также их сочетаний, появляются такие источники ЧС, как сильные морозы, сильная жара, туман, гололед, суховей, заморозки. Они могут стать причиной обморожений, или переохлаждений тела, тепловых или солнечных ударов, роста количества травм и летальных исходов при падениях.

От соотношения температуры и влажности воздуха зависят условия жизнедеятельности человека.

Справка: В 1932г. от сильных морозов замерз Неагарский водопад.

Тема. Чрезвычайные ситуации техногенного характера

План лекции:

Введение.

1. Чрезвычайные ситуации, вызванные транспортными происшествиями.

2. Чрезвычайные ситуации, вызванные пожарами и взрывами на хозяйственных объектах

3. Чрезвычайные ситуации, вызванные выбросом химически опасных веществ.

4. Чрезвычайные ситуации, связанные с выбросом радиоактивных веществ.

5. Чрезвычайные ситуации, вызванные гидродинамическими авариями.

Учебная литература:

1. Защита населения и хозяйственных объектов в ЧС

Радиационная безопасность, ч 1.

2. Защита населения и территории в ЧС

авт. В.Г.Шахов, изд. 2002 г.

3. Чрезвычайные ситуации и правила поведения населения при их возникновении

авт. В.Н.Ковалев, М.В.Самойлов, Н.П.Кохно, изд. 1995 г.

Источником техногенной ЧС является опасное техногенное происшествие, в результате которого на объекте, определенной территории или акватории произошла техногенная ЧС.

Чрезвычайная ситуация техногенного характера – это неблагоприятная обстановка на определенной территории, сложившаяся в результате аварии, катастрофы, которая может повлечь или повлекла за собой человеческие жертвы, ущерб здоровью людей, окружающей среде, значительные материальные потери и нарушение жизнедеятельности людей.

К опасным техногенным происшествиям относят аварии и катастрофы на промышленных объектах или на транспорте, пожаре, взрыве или высвобождении различных видов энергии.

Основные понятия и определения согласно ГОСТу 22.00.05-97

Авария – это опасное техногенное происшествия, создающая на объекте, определенной территории или акватории угрозу жизни и здоровью людей и приводящее к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного или транспортного процесса, а также нанесению ущерба окружающей природной среды.

Катастрофа – это крупная авария, как правило с человеческими жертвами.

Техногенная опасность – это состояние, внутреннее присущее технической системе, промышленному или транспортному объекту, обладающим энергией. Высвобождение этой энергии в виде поражающего фактора может нанести ущерб человеку и окружающей среде.

Промышленная авария – авария на промышленном объекте, технической системе или на промышленной обстановке.

Промышленная катастрофа – крупная промышленная авария, повлекшая за собой человеческие жертвы, ущерб здоровью людей, либо разрушения и уничтожения объекта, материальных ценностей значительных размеров, а также приведшая к серьезному ущербу окружающей природ