Организация пространства. Советы и идеи. Сад и участок

Тема: Вторичные метаболиты. Вторичные метаболиты Первичные метаболиты и их продуценты


С точки зрения биогенеза антибиотики рассматривают как вторичные метаболиты. Вторичные метаболиты - это низкомолекулярные природные продукты, которые 1) синтезируются только некоторыми видами микроорганизмов; 2) не выполняют каких-либо явных функций при росте клеток и часто образуются после прекращения роста культуры; клетки, синтезирующие эти вещества, легко утрачивают способность к синтезу в результате мутаций; 3) часто образуются в виде комплексов сходных продуктов.
Первичные метаболиты - нормальные продукты обмена клетки, такие как аминокислоты, нуклеотиды, коферменты и т. д., необходимые для роста клеток.
Б. ВЗАИМОСВЯЗЬ МЕЖДУ ПЕРВИЧНЫМ
И ВТОРИЧНЫМ МЕТАБОЛИЗМОМ
Изучение биосинтеза антибиотиков состоит в установлении последовательности ферментативных реакций, в ходе которых один или несколько первичных метаболитов (или промежуточных продуктов их биосинтеза) превращаются в антибиотик. Необходимо помнить о том, что образование вторичных метаболитов, особенно в больших количествах, сопровождается значительными изменениями в первичном метаболизме клетки, поскольку при этом клетка должна синтезировать исходный материал, поставлять энергию, например в форме АТР, и восстановленные коферменты. Неудивительно поэтому, что при сравнении штаммов, синтезирующих антибиотики, со штаммами, не способными к их синтезу, обнаруживаются значительные различия в концентрации ферментов, которые прямо не участвуют в синтезе данного антибиотика.
  1. ОСНОВНЫЕ БИОСИНТЕТИЧЕСКИЕ ПУТИ
Ферментативные реакции биосинтеза антибиотиков в принципе не отличаются от реакций, в ходе которых образуются первичные метаболиты. Их можно рассматривать как вариа

ции реакций биосинтеза первичных метаболитов, конечно, за некоторыми исключениями (например, есть антибиотики, содержащие нитрогруппу - функциональную группу, которая никогда не встречается у первичных метаболитов и которая образуется при специфическом окислении аминов).
Механизмы биосинтеза антибиотиков можно разделить на три основные категории.

  1. Антибиотики, происходящие от единственного первичного метаболита. Путь их биосинтеза состоит из последовательности реакций, модифицирующих исходный продукт таким же образом, как и при синтезе аминокислот или нуклеотидов.
  2. Антибиотики, происходящие от двух или трех разных первичных метаболитов, которые модифицируются и конденсируются с образованием сложной молекулы. Аналогичные случаи наблюдаются и в первичном метаболизме при синтезе некоторых коферментов, например фолиевой кислоты или кофермен- та А.
  3. Антибиотики, берущие начало от продуктов полимеризации нескольких сходных метаболитов с образованием основной структуры, которая в дальнейшем может модифицироваться в ходе других ферментативных реакций.
В результате полимеризации образуются антибиотики четырех типов: 1) полипептидные антибиотики, образующиеся путем конденсации аминокислот; 2) антибиотики, образованные из ацетат-пропионатных единиц в реакциях полимеризации, сходных с реакцией биосинтеза жирных кислот; 3) терпеноидные антибиотики, происходящие из ацетатных единиц в пути синтеза изопреноидных соединений; 4) аминогликозидные антибиотики, образующиеся в реакциях конденсации, сходных с реакциями биосинтеза полисахаридов.
Эти процессы сходны с процессами полимеризации, обеспечивающими образование некоторых компонентов мембраны и клеточной стенки.
Необходимо подчеркнуть, что основная структура, полученная путем полимеризации, далее обычно модифицируется; к ней даже могут присоединиться молекулы, образующиеся с помощью других биосинтетических путей. Особенно часто встречаются гликозидные антибиотики - продукты конденсации одного или нескольких сахаров с молекулой, синтезированной в пути 2.
Г. СИНТЕЗ аСЕМЕЙСТВ» АНТИБИОТИКОВ
Часто штаммы микроорганизмов синтезируют несколько близких в химическом и биологическом отношении антибиотиков, составляющих «семейство» (антибиотический комплекс). Образование «семейств» характерно не только для биосинтеза
антибиотиков, а является общим свойством вторичного метаболизма, связанным с довольно большим" размером промежуточных продуктов. Биосинтез комплексов родственных соединений осуществляется в ходе следующих метаболических путей.
  1. Биосинтез «ключевого» метаболита в одном из путей, описанных в предыдущем разделе.
Рифамицин У
п
OKUC/I.
Рифамицин В

Протарифамицин I h
З-атна-5- окси5ензайная кислота +в" Метилмаланатных единиц + 2 Малонатные единицы

  1. Модификация ключевого метаболита с помощью довольно распространенных реакций, например путем окисления метальной группы в спиртовую и далее в карбоксильную, восстановления двойных связей, дегидрирования, метилирования, эте- рификации и т. д.
  2. Один и тот же метаболит может быть субстратом двух или нескольких таких реакций, приводящих к образованию двух или большего числа различных продуктов, которые в свою очередь могут подвергаться различным превращениям с участием ферментов, давая начало «метаболическому дереву».
  3. Один и тот же метаболит может образовываться в двух (или более) различных путях, в которых изменяется только
    порядок ферментных реакций, давая начало «метаболической сети».
Довольно своеобразные концепции метаболического дерева и метаболической сети можно пояснить следующими примерами: биогенез семейства рифамицинов (дерево) и эритромицинов (сеть). Первым метаболитом при биогенезе семейства рифамицинов является проторифамицин I (рис. 6.1), который можно рассматривать как ключевой метаболит. В последовательности

(Зритромицин В)

реакций, порядок которых неизвестен, проторифамицин I превращается в рифамицин W и рифамицин S, завершая часть синтеза с использованием единственного пути («ствол» дерева). Рифамицин S является начальной точкой разветвления нескольких альтернативных путей: конденсация с двууглеродным фрагментом дает начало рифамицину О и рафимицинам L и В. Последний в результате окисления анза-цепи превращается в рифамицин Y. Отщепление одноуглеродного фрагмента при окислении рифамицина S ведет к образованию рифамици- на G, а в результате неизвестных реакций рифамицин S превращается в так называемый рифамициновый комплекс (рифамицины А, С, D и Е). Окисление метальной группы при С-30 дает начало рифамицину R.
Ключевым метаболитом семейства эритромицина является эритронолид В (Эр.В), который превращается в эритромицинА (наиболее сложный метаболит) с помощью следующих четырех реакций (рис. 6.2): 1) гликозилирование по положению 3 пу
тем конденсации с микарозой (Мик.) (реакция I); 2) превращение микарозы в кладинозу (Клад.) в результате метилирования (реакция II); 3) превращение эритронолида В в эри- тронолид А (Эр.А) в результате гидроксилирования по положению 12 (реакция III); 4) конденсация с дезозамином (Дез.) в положении 5 (реакция IV).
Поскольку порядок этих четырех реакций может варьировать, возможны различные метаболические пути, а вместе взятые они составляют метаболическую сеть, представленную на рис. 6.2. Нужно отметить, что имеются также пути, которые представляют собой комбинацию дерева и сети.

Под метаболизмом, или обменом веществ, понимают совокупность хи­мических реакций в организме, обеспечивающих его веществами для по­строения тела и энергией для поддержания жизнедеятельности. Часть реак­ций оказывается сходной для всех живых организмов (образование и рас­щепление нуклеиновых кислот, белков и пептидов, а также большинства углеводов, некоторых карбоновых кислот и т.д.) и получила название пер­вичного обмена (или первичного метаболизма).

Помимо реакций первичного обмена, существует значительное число метаболических путей, приводящих к образованию соединений, свойствен­ных лишь определенным, иногда очень немногим, группам организмов.

Эти реакции, согласно И.Чапеку (1921) и К.Пэху (1940), объединяются термином вторичный метаболизм , или обмен, а их продукты называются продуктами вторичного метаболизма , или вторичными соединениями (иногда вторич­ными метаболитами).

Вторичные соединения образуются преимущественно у вегетативно малоподвижных групп живых организмов - растений и грибов, а также у многих прокариот.

У животных продукты вторичного обмена образуются редко, но часто поступают извне вместе с растительной пищей.

Роль про­дуктов вторичного метаболизма и причины их появления в той или иной группе различны. В самой общей форме им приписываются адаптивное значение и в широком смысле защитные свойства.

Стремительное развитие химии природных соединений за последние три десятилетия, связанное с созданием высокоразрешающих аналитических инструментов, привело к тому, что мир "вторичных соединений" значитель­но расширился. Например, число известных на сегодня алкалоидов прибли­жается к 5000 (по некоторым данным, к 10 000), фенольных соединений - к 10 000, причем эти цифры растут не только с каждым годом, но и с каждым месяцем.

Любое растительное сырье всегда содержит сложный набор первичных и вторичных соединений, которые, как уже говорилось, определяют разно­сторонний характер действия лекарственных растений. Однако роль тех и других в современной фитотерапии пока различна.

Известно относительно немного объектов, использование которых в медицине определяется прежде всего наличием в них первичных соедине­ний. Однако в будущем не исключено повышение их роли в медицине и использование в качестве источников получения новых иммуномодулирующих средств.

Продукты вторичного обмена применяются в современной медицине значительно чаще и шире. Это обусловлено ощутимым и нередко очень «ярким» их фармакологическим эффектом.

Образуясь на основе первичных соединений, они могут либо накапливаться в чистом виде, либо подверга­ются гликозилированию в ходе реакций обмена, т.е. оказываются присоеди­ненными к молекуле какого-либо сахара.


В результате гликозилирования возникают молекулы - гетерозиды, которые отличаются от вторичных со­единений, как правило, лучшей растворимостью, что об­легчает их участие в реакциях обмена и имеет в этом смысле важнейшее биологическое значение.

Гликозилированные формы любых вторичных со­единений принято называть гликозидами.

Вещества первичного синтеза образуются в процессе ассимиляции, т.е. превращения веществ, поступающих в организм извне, в вещества самого организма (протопласт клеток, запасные вещества и т.д.).

К веществам первичного синтеза относят аминокислоты, белки, липиды, углеводы, ферменты, витамины и органические кислоты.

Липиды (жиры), углеводы (полисахариды) и витамины широко используются в медицинской практике (характеристика этих групп веществ дана в соответствующих темах).

Белки , наряду с липидами и углеводами, составляют структуру клеток и тканей растительного организма, участвуют в процессах биосинтеза, являются эффективным энергетическим материалом.

Белки и аминокислоты лекарственных растений оказывают неспецифическое благоприятное действие на организм больного. Они влияют на синтез белков, создают условия для усиленного синтеза иммунных тел, что приводит к повышению защитных сил организма. Улучшенный синтез белков включает также и усиленный синтез ферментов, вследствие чего улучшается обмен веществ. Биогенные амины и аминокислоты играют важную роль в нормализации нервных процессов.

Белки - биополимеры, структурную основу которых составляют длин­ные полипептидные цепи, построенные из остатков α-аминокислот, соеди­ненных между собой пептидными связями. Белки делят на простые (при гидролизе дают только аминокислоты) и сложные - в них белок связан с веществами небелковой природы: с нуклеиновыми кислотами (нуклеопротеиды), полисахаридами (гликопротеиды), липидами (липопротеиды), пиг­ментами (хромопротеиды), ионами металлов (металлопротеиды), остатками фосфорной кислоты (фосфопротеиды).

В настоящий момент почти нет объектов растительного происхождения, применение которых определялось бы наличием в них главным образом белков. Однако не исключено, что в будущем модифицированные расти­тельные белки могут быть использованы как средства, регулирующие обмен веществ в человеческом организме.

Липиды - жиры и жироподобные вещества, являющиеся производными высших жирных кислот, спиртов или альдегидов.

Подразделяются на простые и сложные.

К простым относятся липиды, молекулы которых содержат только остатки жирных кислот (или альдегидов) и спиртов. Из простых липидов в растениях и животных встречаются жиры и жирные масла, представляющие собой триацилглицерины (триглицериды) и воски.

Последние состоят из сложных эфиров высших жирных кислот одно- или двухатомных высших спиртов. К жирам близки простагландины, образующиеся в организме из полиненасыщенных жирных кислот. По химической природе это производные кислоты простаноевой со скелетом из 20 атомов углерода и содержащие циклопентановое кольцо.

Сложные липиды делят на две большие группы:

фосфолипиды и гликолипиды (т. е. соединения, имеющие в своей структуре остаток кислоты фосфорной или углеводный компонент). В составе живых клеток липиды играют важную роль в процессах жизнеобеспечения, образуя энергетиче­ские резервы у растений и животных.

Нуклеиновые кислоты - биополимеры, мономерными звеньями которых являются нуклеотиды, состоящие из остатка фосфорной кислоты, углевод­ного компонента (рибозы или дезоксирибозы) и азотистого (пуринового или пиримидинового) основания. Различают дезоксирибойуклеиновые (ДНК) и рибонуклеиновые (РНК) кислоты. Нуклеиновые кислоты из растений в лечебных целях пока не используются.

Ферменты занимают особое место среди белков. Роль ферментов в растениях специфична - они являются катализаторами большинства химических реакций.

Все ферменты делятся на 2 класса: однокомпонентные и двухкомпонентные. Однокомпонентные ферменты состоят только из белка,

двухкомпонентные - из белка (апофермента) и небелковой части (кофермента). Коферментами могут быть витамины.

В медицинской практике используют следующие ферментные препараты:

- "Нигедаза " - из семян чернушки дамасской - Nigella damascena, сем. лютиковых - Ranunculaceae. В основе препарата фермент липолитического действия, вызывает гидролитическое расщепление жиров растительного и животного происхождения.

Препарат эффективен при панкреатитах, энтероколитах и возрастном снижении липолитической активности пищеварительного сока.

- "Карипазим" и "Лекозим" - из высушенного млечного сока (латекса) папайи (дынного дерева) - Carica papaya L., сем. папаевых - Cariacaceae.

В основе "Карипазима " - сумма протеолитических ферментов (папаин, химопапаин, пептидаза).

Применяют при ожогах III степени, ускоряет отторжение струпов, очищает гранулирующие раны от гнойно-некротических масс.

В основе "Лекозима " - протеолитический фермент папаин и муколитический фермент лизоцим. Применяют в ортопедической, травматологической и нейрохирургической практике при межпозвоночном остеохондрозе, а также в офтальмологии для рассасывания эксудатов.

Органические кислоты, наряду с углеводами и белками, являются самыми распространенными веществами в растениях.

Они принимают участие в дыхании растений, биосинтезе белков, жиров и других веществ. Органические кислоты относятся к веществам как первичного синтеза (яблочная, уксусная, щавелевая, аскорбиновая), так и вторичного синтеза (урсоловая, олеаноловая).

Органические кислоты являются фармакологически активными веществами и участвуют в суммарном эффекте препаратов и лекарственных форм растений:

Салициловая и урсоловая кислоты обладают противовоспалительным действием;

Яблочная и янтарная кислоты - доноры энергетических групп, способствуют повышению физической и умственной работоспособности;

Аскорбиновая кислота - витамин С.

Витамины - особая группа орга­нических веществ, выполняющих важ­ные биологические и биохимические функции в живых организмах. Эти органические соединения различной химической природы синтезируются главным образом растениями, а также микроорганизмами.

Человеку и жи­вотным, которые их не синтезируют, витамины требуются в очень малых количествах по сравнению с пита­тельными веществами (белками, угле­водами, жирами).

Известно более 20 витаминов. Они имеют буквенные обозначения, названия химические и названия, характеризующие их физио­логическое действие. Классифициру­ются витамины на водорастворимые (кислота аскорбиновая, тиамин, ри­бофлавин, кислота пантотеновая, пиридоксин, кислота фолиевая, цианокобаламин, никотинамид, биотин)

и жирорастворимые (ретинол, филлохинон, кальциферолы, токоферолы). К витаминоподобным веществам при­надлежат некоторые флавоноиды, липоевая, оротовая, пангамовая кисло­ты, холин, инозит.

Биологическая роль витаминов разнообразна. Установле­на тесная связь между витаминами и ферментами. Например, большинство витаминов группы В являются предшественниками коферментов и простетических групп ферментов.

Углеводы - обширный класс органических веществ, к которому отно­сятся полиоксикарбонильные соединения и их производные. В зависимости от числа мономеров в молекуле они подразделяются на моносахариды, олигосахариды и полисахариды.

Углеводы, состоящие исключительно из полиоксикарбонильных соеди­нений, получили название гомозидов, а их производные, в молекуле которых имеются остатки иных соединений, называются гетерозидами. К гетерозидам относятся все виды гликозидов.

Моно- и олигосахариды - нормальные компоненты любой живой клет­ки. В тех случаях, когда они накапливаются в значительных количествах, их относят к так называемым эргастическим веществам.

Полисахариды, как правило, всегда накапливаются в значительных количествах как продукты жизнедеятельности протопласта.

Моносахариды и олигосахариды используются в чистом виде, обычно в виде глюкозы, фруктозы и сахарозы. Будучи энергетическими веществами, моно- и олигосахариды, как правило, применяются в качестве наполнителей при изготовлении различных лекарственных форм.

Растения являются ис­точниками получения этих углеводов (сахарный тростник, свекла, вино­град, гидролизованная древесина ряда хвойных и древесных покрытосе­менных).

В растениях синтезируются различные формы полисахаридов , ко­торые отличаются друг от друга как по структуре, так и по выполняемым функциям. Полисахариды находят довольно широкое применение в медицине в различных формах. В частности, широко используются крахмал и продукты его гидролиза, а также целлюлоза, пектин, альгинаты, камеди и слизи.

Целлюлоза (клетчатка ) - поли­мер, составляющий основную массу клеточных стенок растений. Полагают, что молекула клетчатки у разных растений содержит от 1400 до 10 000 остатков β-D-глюкозы.

Крахмал и инулин относятся к за­пасным полисахаридам.

Крахмал на 96-97,6 % состоит из двух полисахаридов: амилозы (линейный глюкан) и амилопектина (разветвленный глю­кан).

Он всегда запасается в виде крахмальных зерен в период активно­го фотосинтеза. У представителей сем. Аsteraсеае и Сатрапи/асеае накапливаются фруктозаны (инулин), особенно в больших количествах в подземных органах.

Слизи и камеди (гумми) - смеси гомо- и гетеросахаридов и полиуро-нидов. Камеди состоят из гетерополисахаридов с обязательным участи­ем уроновых кислот, карбонильные группы которых связаныс ионамиСа 2+ , К + и Мg 2+ .

По растворимости в воде камеди делятся на 3 группы :

Арабиновые, хорошо растворимые в воде (абрикосовая и аравийская);

Бассориновые, плохо растворимые в воде, но сильно в ней набухающие (трагакантовая)

И церазиновые, плохо растворимые и плохо набухающие в воде (вишневая).

Слизи , в отличие от камедей, мо­гут быть и нейтральными (не содержат уроновых кислот), а также имеют меньшую молекулярную массу и хоро­шо растворимы в воде.

Пектиновые вещества - высоко­молекулярные гетерополисахариды, главным структурным компонентом которых является кислота β-D-галактуроновая (полигалактуронид).

В рас­тениях пектиновые вещества присут­ствуют в виде нерастворимого прото­пектина - полимера метоксилированной полигалактуроновой кислоты с галактаном и арабаном клеточной стен­ки: цепочки полиуронида соединены между собой ионами Са 2+ и Мg 2+ .

Вещества вторичного метаболизма

Вещества вторичного синтеза образуются в растениях в результате

Диссимиляции.

Диссимиляция - процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся выделением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вто­ричного синтеза. Например, глюкоза (вещество первичного синтеза) распадается до уксусной кислоты, из которой синтезируется мевалоновая кислота и через ряд промежуточных продуктов - все терпены.

К веществам вторичного синтеза относятся терпены, гликозиды, фенольные соединения, алкалоиды. Все они участвуют в обмене веществ и выполняют определенные важные для растений функции.

Вещества вторичного синтеза применяются в медицинской практике значительно чаще и шире, чем вещества первичного синтеза.

Каждая группа веществ растений не является изолированной и неразрыв­но связана с другими группами биохимическими процессами.

Например:

Большая часть фенольных соединений является гликозидами;

Горечи из класса терпенов являются гликозидами;

Растительные стероиды по происхождению являются терпенами, в то же время сердечные гликозиды, стероидные сапонины и стероидные алкалоиды являются гликозидами;

Каротиноиды, производные тетратерпенов, являются витаминами;

Моносахариды и олигосахариды входят в состав гликозидов.

Вещества первичного синтеза содержат все растения, вещества вторич-

ного синтеза накапливают растения отдельных видов, родов, семейств.

Вторичные метаболиты образуются по преиму­ществу у вегетативно малоподвижных групп живых организмов - растений и грибов.

Роль продуктов вторичного метабо­лизма и причины их появления в той или иной систематической группе различны. В самой общей форме им приписывается адаптивное значение и в широком смысле защитные свой­ства.

В современной медицине продук­ты вторичного обмена применяются значительно шире и чаще, чем пер­вичные метаболиты.

Это связано не­редко с очень ярким фармакологиче­ским эффектом и множественным воздействием на различные системы и органы человека и животных. Синте­зируются они на основе первичных соединений и могут накапливаться либо в свободном виде, либо в ходе реакций обмена подвергаются гликозилированию, т. е. связываются с ка­ким-либо сахаром.

Алкалоиды - азотсодержащие органические соединения основного характера, преимущественно расти­тельного происхождения. Строение молекул алкалоидов весьма разнооб­разно и нередко довольно сложно.

Азот, как правило, располагается в гетероциклах, но иногда находится в бо­ковой цепи. Чаще всего алкалоиды классифицируют на основе строения этих гетероциклов, либо в соответ­ствии с их биогенетическими предше­ственниками - аминокислотами.

Вы­деляют следующие основные группы алкалоидов: пирролидиновые, пири­диновые, пиперидиновые,пирролизидиновые, хинолизидиновые, хиназо-линовые,хинолиновые, изохинолиновые, индольные, дигидроиндольные (беталаины), имидазоловые, пуриновые, дитерпеновые, стероидные (гликоалкалоиды) и алкалоиды без гете­роциклов (протоалкалоиды). Многие из алкалоидов обладают специфиче­ским, часто уникальным физиологи­ческим действием и широко исполь­зуются в медицине. Некоторые алка­лоиды - сильные яды (например, алкалоиды кураре).

Антраценпроизводные -группаприродных соединений желтой, оран­жевой или красной окраски, в основе которых лежит структура антрацена. Они могут иметь различную степень окисленности среднего кольца (про­изводные антрона, антранола и антрахинона) и структуру углеродного скелета (мономерные, димерные и конденсированные соединения). Большинство из них являются произ­водными хризацина (1,8-дигидроксиантрахинона). Реже встречаются про­изводные ализарина (1,2-дигидроксиантрахинона). В растениях произ­водные антрацена могут находиться в свободном виде (агликоны) или в виде гликозидов (антрагликозиды).

Витанолиды - группа фитостероидов, В настоящее время известно не­сколько рядов этого класса соедине­ний. Витанолиды - это полиоксистероиды, у которых в положении 17 находится 6-членное лактонное коль­цо, а в кольце А - кетогруппа у С 1 .

Гликозиды - широко распространенные природные соединения, рас­падающиеся под влиянием различных агентов (кислота, щелочь или фер­мент) на углеводную часть и агликон (генин). Гликозидная связь между са­харом и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счет С-С атомов (С-гликозиды).

Наи­большее распространение в расти­тельном мире имеют O-гликозиды). Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углевод­ные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и, соответственно, гли­козиды называются монозидами, биозидами и олигозидами.

Своеобразными группами природных соединений являются цианогенные гликозиды и тиогликозиды (глюкозинолаты).

Циа­ногенные гликозиды могут быть пред­ставлены как производные α-гидроксинитрилов, содержащих в своем со­ставе синильную кислоту.

Широкое распространение они имеют среди растений сем. Rosасеае, подсем. Рrипоidеае, концентрируясь преимуще­ственно в их семенах (например, гли­козиды амигдалин и пруназин в семе­нах Атуgdalus соттиnis , Аrтеniаса vи1garis ).

Тиогликозиды (глюкозинолаты ) в настоящее время рассматриваются в качестве производных гипотетиче­ского аниона - глюкозинолата, отсю­да и второе название.

Глюкозинолаты найдены пока только у двудольных растений и характерны для сем. Вrassi сасеае, Сарраridaсеае, Resedасеае и других представителей порядка Сарраrа1еs.

В растениях они содер­жатся в виде солей со щелочными металлами, чаще всего с калием (на­пример, глюкозинолат синигрин из семян Вrassica jипсеа и В.nigra .

Изопреноиды - обширный класс природных соединений, рассматрива-

емых как продукт биогенного превращения изопрена.

К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторые - витаминов, алкалоидов и гормонов животных.

Терпены и терпеноиды - ненасы­щенные углеводороды и их производ­ные состава (С 5 Н 8) n , где n = 2 или n > 2. По числу изопреновых звеньев их делят на несколько классов: моно-, сескви-, ди-, три-,тетра- и политер-пеноиды.

Монотерпеноиды (С 10 Н 16) и сесквитерпеноиды (С 15 Н 24) являются обыч­ными компонентами эфирных масел.

Вопросы:

1. Метаболизм. Первичный и вторичный метаболизм.

2. Особенности клеточного метаболизма.

3. Клетка как открытая термодинамическая система. Виды работы в клетке. Макроэргические соединения.

4. Ферменты: структура (простатическая группа, коферменты) и функции. Классификация ферментов

5. Вторичные метаболиты, классификация, роль в жизни растения, использование человеком. Образование пигментов, токсинов, ароматических веществ микроорганизмами (грибы, бактерии).

1. Метаболизм (обмен веществ) – совокупность всех химических реакций, идущих в клетке.

Метаболиты – продукты обмена веществ.

На образование в клетках гормонов (этилена, подавляют синтез ИУК);

Тормозят ризогенез и растяжение клеток;

Являются фитотоксинами (оказывают антимикробное действие);

С их помощью одно растение может действовать на другое,

Дубильные вещества повышают устойчивость деревьев к грибным поражениям.

Используются в медицине для стерилизации, лекарства (салициловая кислота), в промышленности как красители.

5.2. Алкалоиды – гетероциклические соединения, содержащие в молекуле один или несколько атомов азота. Известно около 10 000 алкалоидов. Они найдены у 20% растений, наиболее распространены среди покрытосеменных (цветковых) растений. В моховидных и папоротниковидных алкалоиды встречаются редко.

Алкалоиды синтезируются из аминокислот: орнитина, тирозина, лизина, триптофана, фенилаланина, гистидина, атраниловой кислоты.

Они накапливаются в активно растущих тканях, в клетках эпидермы и гиподермы, в обкладках проводящих пучков, в млечниках. Они могут накапливаться не в тех клетках, где образуются, а в других. Например, никотин образуется в корнях, а накапливается в листьях. Обычно их концентрация составляет десятые или сотые доли процента, но хинное дерево содержит 15 – 20 % алкалоидов. Разные растения могут содержать различные алкалоиды. Алкалоиды находятся в листьях, коре, корнях, древесине.

Функции алкалоидов:

регулируют рост растений (ИУК), защищают растения от поедания животными.

Используются алкалоиды

в качестве лекарств: кодеин (от кашля), морфин (болеутоляющее), кофеин (при нервных и сердечно-сосудистых заболеваниях), хинин (от малярии). Атропин, пилокарпин, стрихнин, эфедрин ядовиты, но в малых дозах могут применяться как лекарства.;

никотин, анабазин используются для борьбы с насекомыми.

5.3. Изопреноиды (терпеноиды) – соединения, составленные из нескольких изопреновых единиц (С5Н8 – изопрен) и имеющие общую формулу (С5Н8)n. Благодаря дополнительным группам (радикалам) изопреноиды могут иметь число атомов углерода в молекуле и некратное 5. К терпенам относятся не только углеводороды, но и соединения со спиртовыми, альдегидными, кето-, лактон- и кислотными группами.

Политерпены – каучук, гутта.

Терпеноидами являются гибберелловая кислота (гиббереллины), абсцизовая кислота, цитокинины. Они не растворяются в воде. Находятся в хлоропластах, в мембранах.

Каротиноиды окрашены от желтого до красно-фиолетового цвета, образуются из ликопина, растворимы в жирах.

Изопрены входят

в состав масла хвои, шишек, цветков, плодов, древесины;

смол, латекса, эфирных масел.

Функции:

Защищают растения от бактерий, насекомых и животных; некоторые из них участвуют в закрытии ран и защищают от насекомых.

К ним относятся гормоны (цитокинины, гиббереллины, абсцизовая кислота, брассиностероиды);

Каротиноиды участвуют в световой фазе фотосинтеза, входя в ССК, и защищают хлорофилл от фотоокисления;

Стеролы входят в состав мембран, влияют на их проницаемость.

Используют как лекарства (камфора, ментол, сердечные гликозиды), витамин А. Они являются основными компонентами эфирных масел, поэтому их используют в парфюмерии, содержатся в репелентах. Входят в состав каучука. Спирт гераниол входит в состав розового масла, масла лавровых листьев, в масла цветков апельсина, жасмина, масла эвкалипта).

5.4. Синтез вторичных метаболитов

характеризуется некоторыми особенностями:

1) предшественниками для них служит небольшое количество первичных метаболитов. Например, для синтеза алкалоидов необходимы 8(?) аминокислот, для синтеза фенолов – фенилаланин или тирозин, для синтеза изопреноидов – мевалоновая кислота;

2) многие вторичные метаболиты синтезируются разными путями;

3) в синтезе участвуют специальные ферменты.

Вторичные метаболиты синтезируются в цитозоле, эндоплазматическом ретикулуме, хлоропластах.

5.5. Локализация вторичных метаболитов

Накапливаются в вакуолях (алкалоиды, фенолы, беталаины, цианогенные гликозиды, глюкозинолаты), в периплазматическом пространстве (фенолы). Изопреноиды после синтеза выходят из клетки.

Вторичные метаболиты редко распространены в тканях равномерно. Часто они накапливаются в идиобластах, млечниках, специальных каналах и ходах.

Идиобласты (от греч. Idios своеобразный) – одиночные клетки, относящиеся к выделительным тканям и отличающиеся от соседних клеток формой, строением. Находятся они в эпидерме стеблей или листьев (только в эпидерме?).

Места синтеза и локализации часто разделены. Например, никотин синтезируется в корнях, а накапливается в листьях.

Вторичные метаболиты выделяются во внешнюю среду с помощью выделительных тканей (железистых клеток, железистых волосков – трихом).

Для алкалоидов выделение нехарактерно.

Синтез и накопление в тканях вторичных метаболитов зависит главным образом от вида растения, иногда от этапа онтогенеза или возраста, от внешних условий. Распределение в тканях зависит от вида растения.

5.6. Функции вторичных метаболитов

В процессе открытия вторичных метаболитов существовали разные мнения об их значении в жизни растения. Их считали ненужными, отбросами, (их синтез) тупиком метаболизма, продуктами детоксикации ядовитых первичных метаболитов, например свободных аминокислот.

В настоящее время уже известны многие функции этих соединений, например запасающая, защитная. Алкалоиды - это запас азота для клеток, фенольные соединения могут быть дыхательным субстратом. Вторичные метаболиты защищают растения от биопатогенов. Эфирные масла, представляющие собой смесь вторичных метаболитов, обладают антимикробными и антифунгицидными свойствами. Некоторые вторичные метаболиты, распадаясь при гидролизе, образуют яд – синильную кислоту, кумарин. Вторичными метаболитами являются фитоалексины, вещества, образующиеся в ответ на инфекцию и участвующие в реакции сверхчувствительности.

Антоцианы, каротиноиды, беталаины, обеспечивающие окраску цветков и плодов, способствуют размножению растений и распространению семян.

Вторичные метаболиты останавливают прорастание семян конкурирующих видов.

Литература:

1. Мерсер Э . Введение в биохимию растений. Т. 2. – М. «Мир»,1986.

2. (ред.). Физиология растений. – М. «Академия», 2005. С. 588 – 619.

3. Харборн дж. Введение в экологическую биохимию . – М. «Мир», 1985.

4. Л. Биохимия растений. – М. «Высшая школа», 1986. С. 312 – 358.

5. , -И. Физиология древесных растений. – М. «Лесная промышленность», 1974. 421 с.

6. Л. Биохимия растений. – М. ВШ. 1986. 502 с.

вторичные метаболиты

см. метаболиты вторичные.

(Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.)

  • - вещества, образующиеся в клетке в процессе метаболизма...

    Словарь микробиологии

  • - соединения, часто сложного состава, не являющиеся основными промежуточными соединениями метаболизма клетки, образуются в его тупиковых ветвях. М. в. растений являются, напр., алкалоиды...

    Словарь микробиологии

  • - образования, возникающие по бокам первичных бугорков конуса нарастания стебля. В. б. представляют собой обычно будущие почки стебля, из которых развиваются в дальнейшем боковые побеги...

    Словарь ботанических терминов

  • - вещества, образующиеся в организме в результате обмена веществ. М. называют также все вещества, входящие в состав организма и участвующие в обменных процессах...

    Словарь ботанических терминов

  • - см. Множественные вихри...

    Словарь ветров

  • - см. Гормоны среды...

    Экологический словарь

  • - промежуточные продукты обмена в-в в живых клетках. Многие из них оказывают регулирующее влияние на биохим. и физиол. процессы в организме...

    Естествознание. Энциклопедический словарь

  • - Б., появляющиеся в конце 6 - начале 7 месяца эмбрионального развития, имеющиеся у всех здоровых людей, но изменчивые по конфигурации...

    Большой медицинский словарь

  • - промежуточные продукты обмена веществ...

    Большой медицинский словарь

  • - дополнительные последующие выгоды, которые порождаются первичными выгодами проекта.По-английски: Secondary benefitsСм. также: Инвестиционные проекты  ...

    Финансовый словарь

  • - вещества, образующиеся в клетках, тканях и органах растений и животных в процессе межуточного обмена и участвующие в последующих процессах ассимиляции и диссимиляции...

    Большая Советская энциклопедия

  • - промежуточные продукты обмена веществ в живых клетках. Многие из них оказывают регулирующее влияние на биохимические и физиологические процессы в организме...

    Большой энциклопедический словарь

  • - метаболи́ты вещества, образующиеся в организме в процессе обмена веществ - метаболизма ср. анти)...

    Словарь иностранных слов русского языка

  • - мн., Р. метаболи/тов...

    Орфографический словарь русского языка

  • - метаболи́ты мн. Продукты обмена веществ, происходящего в организме...

    Толковый словарь Ефремовой

  • - метабол"иты, -ов, ед. ч. -л"...

    Русский орфографический словарь

"вторичные метаболиты" в книгах

автора Александров Юрий

автора

3.2. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей «микросреды»

Из книги Основы психофизиологии автора Александров Юрий

3.2. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей «микросреды» Упомянутые ранее этапы приобретают смысл в том случае, если принять, что процесс, обеспечивающий переход от прек постсинаптическим образованиям,

Метаболиты в норме и при патологии

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Метаболиты в норме и при патологии В живой клетке ежесекундно образуются сотни метаболитов. Однако их концентрации поддерживаются на определенном уровне, который является специфической биохимической константой или референтной величиной. При болезнях происходит

Вторичные размещения

Из книги Финансовый менеджмент – это просто [Базовый курс для руководителей и начинающих специалистов] автора Герасименко Алексей

Вторичные размещения Как вы понимаете, IPO для компаний – это первый шаг. В дальнейшем после IPO многие компании продолжают выпускать акции. Это так называемые вторичные размещения (SEO – Secondary или Seasoned Equity Offerings). По общей схеме проведения они сходны с IPO. Естественно, такие

Вторичные причины

Из книги Необычная книга для обычных родителей. Простые ответы на самые част(н)ые вопросы автора Милованова Анна Викторовна

Вторичные причины Возраст родителей и частота появления детейСтатистически известно, что мальчиков чаще рожают молодые (до 20 лет) женщины и стареющие мужчины. Понятно, что вероятность рождения многочисленных сыновей у семей с подобным мезальянсом выше. Тем более что

Вторичные запоры

Из книги Полный медицинский справочник диагностики автора Вяткина П.

Вторичные запоры Болезни желудка, особенно при повышенной кислотности желудочного сока, желчных путей, женских половых органов, эндокринные расстройства (гипотиреоз, гиперпаратиреоз, акромегалия, феохромоцитома и др.) также часто сопровождаются запорами.В этом смысле

Вторичные качества

БСЭ

Вторичные минералы

Из книги Большая Советская Энциклопедия (ВТ) автора БСЭ

Метаболиты

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

35. Вторичные ИДС

Из книги Патологическая физиология [Шпаргалки] автора

35. Вторичные ИДС Вторичные ИДС развиваются под влиянием различных экзогенных воздействий на нормально функционирующую иммунную систему.Перечень основных заболеваний, сопровождающихся вторичным иммунодефицитом, предложенный экспертами ВОЗ:1) инфекционные

Вторичные ИДС

Из книги Патологическая физиология [Конспект лекций] автора Селезнева Татьяна Дмитриевна

Вторичные ИДС Вторичные ИДС развиваются под влиянием различных экзогенных воздействий на нормально функционирующую иммунную систему.Перечень основных заболеваний, сопровождающихся вторичным иммунодефицитом, предложенный экспертами ВОЗ.1. Инфекционные заболевания:а)

Вторичные менингиты

Из книги Справочник фельдшера автора Лазарева Галина Юрьевна

Вторичные менингиты Вторичные менингиты являются осложнением при гнойных заболеваниях любой локализации, особенно расположенных рядом с мозгом. Возбудитель – чаще всего стафилококк или стрептококк – попадает в мозговые оболочки через кровь и

11.3.2. Вторичные энцефалиты

Из книги Неврология и нейрохирургия автора Гусев Евгений Иванович

11.3.2. Вторичные энцефалиты Вторичные энцефалиты наблюдаются при общих

Метаболиты - доминирующие факторы в патологии и клинике

Из книги Тайная мудрость человеческого организма автора Залманов Александр Соломонович

Метаболиты - доминирующие факторы в патологии и клинике Метаболиты - зола живой субстанции, отходы клеточного и тканевого метаболизма, если они не элиминированы, закупоривают, загромождают каналы выделения конечных продуктов обмена веществ. Существуют метаболиты

Вторичные метаболиты растений

Термины "вторичные метаболиты" и "вторичный метаболизм" вошли в лексику биологов в конце XIX века с легкой руки профессора Косселя. В 1891 году в Берлине он прочитал не собрании Физиологического общества лекцию, которая называлась «О химическом составе клеток.». В этой лекции, которая была опубликована в том же году в Archiv fur Physiologie, он предложил разделить составляющие клетку вещества на первичные и вторичные. «В то время как первичные метаболиты присутствуют в каждой растительной клетке, способной к делению, то вторичные метаболиты присутствуют в клетках только «нечаянно» и не необходимы для жизни растения.

Случайное распространение этих соединений, их нерегулярное нахождение в близких видах растений, вероятно свидетельствует о том, что их синтез связан с процессами, не являющимися неотъемлемыми для каждой клетки, а имеющими скорее вторичный характер.... Я предлагаю называть соединения, имеющие важность для каждой клетки первичными, а соединения, не присутствующие в любой растительной клетке - вторичными». Отсюда становится понятным происхождение названия «вторичные метаболиты» - значит второстепенные, «случайные».

Круг соединений первичного метаболизма очевиден - это прежде всего белки, жиры, углеводы и

нуклеиновые кислоты. Правда, Коссель считал первичными метаболитами только несколько сотен низкомолекулярных соединений, необходимых для каждой делящейся растительной клетки. До недавнего времени вторичные матаболиты также не служили предметом особых споров. Соглашаясь с Косселем, большинство исследователей считали, что это некоторые "чудачества" метаболизма, допустимые излишества. Такие соединения в литературе иногда даже называли "веществами роскоши клеток".

Подавляющее большинство активных агентов было получено из растений. Первым таким соединением оказался морфий - алкалоид морфин, который в 1803 году выделил из опия (высушенный сок коробочек мака) немецкий аптекарь Зертюнер. Собственно, это событие можно считать началом изучения вторичных метаболитов высших растений.

Затем наступил черед других алкалоидов. Профессор Харьковского университета Ф.И.Гизе в 1816 году получил из коры хинного дерева цинхонин, но это осталось практически незамеченным и многие исследователи приписывают открытие алкалоидов хинного дерева Десосу, который выделил в чистом виде хинин и цинхонин только в 1820 г.

В 1818 году Каванту и Пелетье выделили из рвотного ореха (семена чилибухи Strychnos nux-vomica L.) стрихнин; Рунге в 1920 году нашел кофеин в кофе; в 1826 г. Гизекке открыл кониин в болиголове (Conium maculatum L); в 1828 г. Поссель и Райман выделили никотин из табака; в 1831 г. Майн получил атропин из белладонны (Atropa beladonna L.).

Использования природного многообразия в терапевтических целях не ограничивается только грибами и актиномицетами, продуцирующими антибиотики. В частности, растения отличаются поразительным многообразием синтетических процессов, конечные продукты которых представлены соединениями самого разного химического строения. В современной медицине применяют жирные кислоты, масла, полисахариды растительного происхождения, а также удивительно разнообразные вторичные метаболиты. Вторичный метаболизм, в отличие от общего для всех организмов первичного обмена, характеризуется таксономическим своеобразием. Вторичный метаболизм растений - это особенность дифференцированных растительных клеток и тканей, он присущ только специализированным органам, приурочен к определённым фазам жизненного цикла. К основным классам вторичных метаболитов относятся алкалоиды, изопреноиды и фенольные соединения. В растениях также синтезируются цианогенные гликозиды, поликетиды, витамины. Из 30 известных витаминов около 20 поступает в организм человека с растительной пищей. Некоторые из перечисленных классов соединений, а также растения, из которых они выделяются, представлены в таблице

Вторичные метаболиты Растение-источник

Алкалоиды Мак снотворный. Красавка белладонна. Барвинок. Раувольфия. Безвременник. Хинное дерево. Табак.

Изопреноиды:

таксолы Тиссовое дерево

сердечные гликозиды, или карденолиды Наперстянка. Лиана строфант. Ландыш майский.

тритерпеновые гликозиды,или сапонины Женьшень. Солодка. Аралия.

стероидные гликозиды Лианы диоскорея.

Фенольные соединения:

флавоноиды Солодка. Пустырник. Бессмертник.

Алкалоиды. К настоящему времени известно около10 тысяч алкалоидов, и они обладают высокой фармакологической активностью. Содержание алкалоидов в растительном сырье обычно не превышает нескольких процентов, но в коре хинном дерева их количество достигает 15-20%. Алкалоиды могут концентрироваться в различных органах и тканях. При этом часто они накапливаются не в тех тканях, где синтезируются. Например, никотин синтезируется в корнях табака, а запасается в листьях. Среди наиболее известных алкалоидов можно назвать морфин, кодеин, папаверин, которые были выделены из коробочек мака снотворного (Papaver somniferum). Алкалоиды красавки белладонны (Atropa belladonna), которую иначе называют «сонной одурью», входят в состав многих медицинских препаратов, таких как, бесалол, беллалгин, беллатаминал, солутан. Широкое распространение в современной онкологии получили алкалоиды из барвинка (Catharanthus roseus) – винбластин и винкристин, а резерпин и аймалин из корней раувольфии (Rauvolfia serpentina) используются в качестве психотропных средств и для понижения давления.

Изопреноиды. По числу выделенных соединений изопреноиды превосходят все другие классы вторичных метаболитов (их более 23 тысяч), но по фармакологической активности они уступают алкалоидам. В данную группу объединены разные по строению соединения. Некоторые из них невозможно заменить синтетическими препаратами, например, таксолы, выделенные из коры тиссового дерева. Они являются чрезвычайно активными цитостатиками, действуя на раковые клетки в очень малых дозах. На них в настоящее время в онкологии возлагают большие надежды.

Наиболее важную группу изопреноидов составляют сердечные гликозиды, или карденолиды. Например, из двух видов наперстянки пурпуровой (Digitalis purpurea) и наперстянки шерстистой (D. lanata) выделено около 50 карденолидов, в том числе дигитоксин. Широко вошёл в медицинскую практику природный гликозид к-строфантозид, являющийся незаменимым средством для оказания скорой помощи: он действует на сердце через 1-3 мин. после внутривенного введения. Этот препарат выделяют из семян лианы Strophanthus kombe, произрастающей в тропических лесах Африки, где местное население использовало сок этого растения в качестве яда для стрел. Сердечные гликозиды из ландыша майского (Cjnvallaria majalis) по активности превосходят другие сердечные гликозиды (например, дигитоксин).

Другие важные для медицины группы изопреноидов представляют собой тритерпеновые гликозиды, или сапонины. Большинство представителей этой группы имеют высокую биологическую активность, которая обусловливает их лечебное действие и применение таких известных биостимуляторов, как женьшень, аралия, солодка.

Стероидные гликозиды отличаются по биологической активности от тритерпеновых. Для современной медицины это исходное сырьё для синтеза многих гормонов и противозачаточных средств. Начиная с 40-х годов прошлого столетия для получения стероидного сырья, в основном, используют гликозид диосгенин из корневищ различных видов лиан из рода Dioscorea. В настоящее время из него получают более 50% всех стероидных лекарственных средств. Исследования последних лет выявили у соединений этой группы и другие важные для медицины свойства.

Фенольные соединения. Самая многочисленная и широко распространённая в растениях группа фенольных соединений - флавоноиды. Они накапливаются в корнях солодки (Glycyrrhiza glabra), траве пустырника (Leonurus cordiaca), цветках бессмертника (Helichryzum arenarium). Флавоноиды отличаются широким спектром фармакологического действия. Они обладают желчегонным, бактерицидным, спазмолитическим, кардиотоническим действием, уменьшают ломкость и проницаемость сосудов (например, рутин), способны связывать и выводить из организма радионуклиды, у них также выявлен противораковый эффект.

Поражающие воображение биосинтетические возможности растений ещё далеко не раскрыты. Из 250 тыс. обитающих на Земле видов обследовано не более 15%, и лишь для некоторых лекарственных растений получены культуры клеток. Так, культуры клеток женьшеня и диоскореи являются основой биотехнологического процесса получения тритерпеновых и стероидных гликозидов. На внедрение этих новых технологий возлагают большие надежды, так как многие редкие или вообще не произрастающие в наших климатических условиях растения можно использовать в виде каллусных или суспензионных культур. К сожалению, техногенный характер цивилизации на нашей планете наносит непоправимый ущерб дикорастущей флоре. Изменяется не только биосфера Земли - среда обитания человека, но и уничтожаются огромные неисследованные кладовые здоровья и долголетия.