Организация пространства. Советы и идеи. Сад и участок

Качественный анализ. Количественный и качественный анализ Качественное и количественное изучение химических реакций

Курсовая работа

Методы качественного и количественного анализа. Методика определения катиона Сu2+


Уральск-2013



Введение

Качественный анализ

1 "Сухой" метод анализа

2 "Мокрый" метод анализа

Количественный анализ

3 Окислительно-восстановительное титрование. Иодометрия

Разделение предложенной смеси

Методы и методика определения катиона Сu2+

1 Общая характеристика катионов V аналатической группы

Заключение

смесь катион очистка разделение


Введение


Цель курсовой работы - изучение способов разделения смесей, рассмотрение методов качественного и количественного анализа.

В соответствии с поставленной целью решаются следующие задачи: дать определение методам качественного и количественного анализа, рассмотреть методы и методику определения катиона Сu2+, провести анализ свойств веществ в предлагаемой смеси, выявить метод очистки и обнаружения предложенного катиона

Предмет исследования - методы анализа смесей катионов

Объектом исследования в работе выступает катион Сu2+.

Актуальность работы. Главной практической задачей аналитической химии является определение состава веществ и их смесей. Знание теории и способов выполнения химического анализа, владение химическими методами анализа необходимо для осуществления контроля сырья, полуфабрикатов и готовой продукции в химической и фармацевтической промышленности.

Задачей качественного анализа является установление состава вещества, то есть выяснение из каких атомов, молекул, ионов и т.д. состоит вещество. Качественный анализ можно проводить химическими, физико-химическими и физическими методами.

Химические методы основаны на использовании аналитических реакций, проводимых с анализируемым веществом с помощью реактивов. Аналитическая реакция должна сопровождаться такими изменениями в системе, которые можно зафиксировать визуально или с помощью того или иного прибора. Если изменение, на основании которого можно сделать вывод о наличии в анализируемом веществе определенных компонентов, отмечается визуально, то соответствующий метод относится к классическому химическому методу.

Качественный анализ может быть осуществлен и без помощи аналитической реакции, а путем проведения определенных физических операций. Соответствующие методы относятся к физическим. Так как при проведении анализа физико-химическими и физическими методами применяют специальные приборы, эти методы часто называют инструментальными.

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого - установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.


1. Качественный анализ


Анализируемая проба в большинстве случаев содержит несколько компонентов в различных соотношениях. Для разделения и концентрирования компонентов анализируемой смеси используют методы осаждения, соосаждения, экстракции, хроматографии, электролиза, электрофореза, дистилляции, сублимации, зонной плавки, флотации и др. В основе большинства методов разделения лежит принцип избирательного распределения компонентов пробы между двумя разделяющимися фазами. Открываемый компонент пробы переводят по возможности полностью в одну из фаз.

Для анализа сложных многокомпонентных смесей используют метод последовательного отделения с помощью групповых реагентов небольших групп ионов. Дальнейший анализ этих групп проводят дробным методом, а при необходимости используют дополнительное разделение в каждой группе. Строгую последовательность отделения групп с использованием групповых реагентов называют систематическим ходом анализа. Последовательно отделяемые в систематическом ходе анализа группы ионов называют аналитическими группами. Они лежат в основе аналитической классификации ионов. Для разных схем систематического анализа состав аналитических групп различен, он зависит от используемых групповых реагентов и условий осаждения. Таким образом, на практике для анализа смесей элементов используют сочетание дробного и систематического хода анализа.

Существует несколько схем систематического анализа смесей ионов. В них наиболее широко для целей разделения используют осаждение, затем экстракцию и распределительную (бумажную) и ионообменную хроматографии. Перед систематическим анализом обычно проводят предварительные испытания дробными реакциями. Их результаты вместе с другими данными о свойствах и предполагаемом составе пробы помогают выбрать ту или иную схему систематического хода анализа.

Качественный анализ позволяет определить, какие элементы, молекулы входят в состав анализируемого образца или какие отсутствуют. При анализе неорганических веществ обычно имеют дело с водными растворами солей, кислот и оснований, в растворах которых они диссоциированы на ионы. Поэтому реакции происходят между свободными ионами и открываются непосредственно не элементы, а образуемые ими ионы (катионы и анионы). Например, для открытия хлора в HCI или в растворах хлоридов на них действуют раствором AgNO3. При этом выпадает характерный творожистый осадок белого цвета AgCI:


Сущность рассматриваемой реакции заключается во взаимодействии находящихся в растворе ионов Ag+ и Cl-. Но если бы хлор присутствовал в видеClO3- - хлорат иона - или в виде недиссоциированных молекул хлороформа CHCl3, то эта реакция не имела бы места. Отсюда ясно, что, применяя эту реакцию, мы открываем не элемент хлор, а ион Cl-. Если элемент образует ионы различной валентности, то для каждого из них характерны свои реакции.

Поэтому качественный анализ неорганических веществ подразделяется на анализ катионов и анализ анионов сложного вещества.

В химическом качественном анализе применяют два типа реакций:

·реакции обнаружения (открытия иона);

·реакции разделения ионов.

Реакции обнаружения - аналитический сигнал - должны сопровождаться визуальным эффектом:

·выпадение осадка определенного цвета и структуры;

·изменение цвета раствора;

·выделение газа;

·исчезновение окраски;

·растворение осадка.

Таким образом, по этим признакам судят о присутствии или отсутствии иона.

Реакции разделения применяются в систематическом анализе, когда присутствие одних ионов мешает обнаружению других ионов, при этом применяются реактивы, способные отделить один или несколько ионов: в виде осадка; путем растворения осадка.

Требования к разделению:

·реакции должны протекать быстро;

·продукты должны иметь малую растворимость для полноты осаждения;

·получающиеся осадки должны иметь кристаллическую структуру.

Способы выполнения аналитических реакций

В одних случаях вещества анализируют сухим путем, т.е. без перевода их в раствор, а в других случаях - мокрым путем.


1 "Сухой" метод анализа


При выполнении анализа "сухим" методом исследуемые вещества и реактивы находятся в твердом состоянии. Большинство подобных определений связаны с нагреванием и образуют группу пирохимических методов анализа. К ним относят метод окрашивания пламени, метод окрашивания "перлов" буры, соды и других соединений, метод нагревания в калильной трубке и др. К "сухим" методам анализа относят и метод растирания порошков.

При выполнении реакций сухим способом вещества берут в твердом виде и обычно нагревают до высокой температуры. Аналитическим сигналом является:

·окрашивание пламени летучими солями некоторых металлов - основан на способности некоторых элементов и их соединений (щелочные, щелочно-земельные металлы, медь, бор и др.) окрашивать пламя в определенный цвет. Например: натрий - желтый, калий - фиолетовый, кальций - кирпично-красный, стронций - карминово-красный, барий - желтовато-зеленый, медь - ярко-зеленый. Пробу на присутствие иона проводят с помощью тщательно очищенной платиновой или нихромовой проволочки, один конец которой вплавлен в стеклянную трубку небольшого диаметра, а другой согнут в маленькую петлю (ушко). Ушко раскаленной проволочки вводят в анализируемое вещество, а затем вносят в наиболее горячую часть газовой горелки.

·образование окрашенных перлов (стекол). Некоторые вещества при сплавлении с тетраборатом натрия Na2B4O7?10Н2О, "фосфатной солью" NaNH4HPO4?4H2O и другими соединениями дают окрашенные стекла - "перлы". Для получения "перла" буры ушко раскаленной платиновой проволочки вводят в твердую буру, нагревают в пламени горелки до прекращения вспучивания, охлаждают и, коснувшись полученным "перлом" анализируемого вещества, вновь вводят ушко проволочки в пламя горелки, а затем охлаждают. По окраске "перла" судят о присутствии того или иного элемента. Если вещество совсем не возгоняется, в его составе отсутствуют летучие компоненты. Судить о присутствии тех или иных соединений можно по окраске возгона. Так, соли аммония, хлорид и бромид ртути, оксиды мышьяка и сурьмы дают белый возгон, сернистые соединения ртути и мышьяка, иодид ртути, сера - желтый возгон; другие соединения ртути, мышьяка, иодиды - серый или черный возгон. Наряду с возгонкой при нагревании может происходить выделение различных газов и паров, что даст информацию о качественном составе вещества. Например, кислород выделяется, если в анализируемой пробе присутствуют перманганаты, нитраты, пероксиды и др.; оксид углерода (IV) СО2 выделяется при разложении карбонатов; оксиды азота - при разложении нитратов и нитритов; пары воды - при разложении кристаллогидратов, гидроксидов, органических соединений и т.д. Калильная трубка представляет собой пробирку из тугоплавкого стекла или кварца длиной 5-6 см, диаметром 0,5 см. Небольшое количество анализируемого вещества насыпают в трубку, медленно и осторожно нагревают в пламени горелки и наблюдают за происходящим явлением.

·Метод растирания порошков. Присутствие ионов того или иного элемента обнаруживают по образованию соединений с характерным цветом или запахом. Так, при растирании смеси тиоцианата аммония NH4NCS или тиоцианата калия KNCS с солями Fe3+ появляется красно-бурое окрашивание, а с солями Со2+ - синее. Растирание проводят в фарфоровой ступке или на специальной фарфоровой пластинке.

Все "сухие" методы анализа используют только для вспомогательных или проверочных определений.


2 "Мокрый" метод анализа


При анализе мокрым путем исследуемое вещество переводят в раствор, используя дистиллированную воду, минеральные кислоты, водный раствор аммиака, сильной щелочи, некоторые органические растворители и т.д., и ведут анализ раствора. Следовательно, механизм протекающих реакций может быть представлен только ионным уравнением. Например, для реакции Pb(NO3)2 + 2KI ? PbI2? + 2KNO3 уравнение в ионной форме имеет вид:


Рb2+ +2I- ? РbI2?.


Из ионного уравнения видно, что осадок РbI2 образуется при взаимодействии катионов Рb2+ и анионов I-. Один и тот же элемент может существовать в растворах в виде разных ионов:


Fe3+ - Fe2+; Zn2+ - ZnO22-;+ - MnO4- - MnO42-;+ - SnO22- - SnO32- и т.д.


Каждый из этих ионов имеет свои характерные реакции. Выполняют реакции "мокрым" методом в химических или центрифужных пробирках и на фильтровальной бумаге.

Классификация методов по количеству вещества

В зависимости от массы анализируемого вещества и объема растворов методы анализа делят на макро-, полумикро-, микро-, ультрамикро-, субмикро- и субультрамикрометоды. Соответственно различают и технику выполнения отдельных операций.

Наиболее широкое применение в качестве анализа получил полумикрометод с элементами микроанализа. Этот метод имеет ряд преимуществ: для выполнения реакции расходуется небольшое количество анализируемого вещества и реактивов; сокращается время, затрачиваемое на выполнение анализа, за счет замены фильтрования осадков центрифугированием; резко сокращается выброс вредных газообразных веществ, тем самым улучшаются санитарно-гигиенические условия работы.


3 Микрокристаллоскопический метод анализа


Кристаллы характерной формы получают путём внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещённую на предметное стекло. По мере испарения воды по периметру капли появляются кристаллы продукта реакции характерной формы, которые рассматриваются под микроскопом.

Проводя аналитическую реакцию, необходимо создавать определённые условия, зависящие от свойств образующихся продуктов, так как иначе результат реакции окажется недостоверным. К таким условиям относятся:

) pH раствора - надлежащая среда - это одно из важнейших условий проведения реакции, которая в случае необходимости создаётся прибавлением к раствору кислоты или щелочи. По каплям к анализируемому раствору добавляют кислоту или щёлочь до нужной величины pH, постоянно проверяя по цветной шкале универсального индикатора;

) температура - для получения аналитического сигнала некоторые рекции необходимо проводить при нагревании на водяной бане или пламени спиртовки, так как на холоде или при комнатной температуре они не проходят;

) концентрация - она должна быть достаточно большая, иначе при малых значениях концентрации реакции перестают удаваться. Причина соблюдения условия достаточной концентрации: всякое вещество может выпадать в осадок только тогда, когда оно образуется в растворе в концентрации, превышающей его растворимость при данных условиях. Если вещество очень трудно растворимо, оно выпадает в осадок уже при очень малой концентрации открываемого иона: соответствующая реакция называется чувствительной. А при значительной растворимости образующегося соединения реакция мало чувствительна и удаётся лишь при большой концентрации открываемого иона. То же относится и к реакциям, сопрвождающимся изменением окраски.

Количественно чувствительность реакций характеризуют взаимно связанными показателями: открываемым минимумом и предельным разбавлением. Открываемый минимум - это наименьшее количество вещества или иона, которое может быть открыто посредством данной реакции, выражают его в микрограммах (m) (10-6 г). Открываемый минимум неполностью характеризует чувствительность реакции, т.к. имеет значение не только абсолютное количество, но и концентрация соответствующего вещества или иона в растворе. Поэтому указывают также и предельное разбавление, которое характеризует наименьшую концентрацию вещества (иона), при которой он может быть обнаружен. Предельное разбавление выражают отношением весовой части вещества к весовому количеству раствора (G).

Между открываемым минимумом m (выраженным в микрограммах) и предельным разбавлением (G) существует соотношение


где V - объём раствора, мл.

Чувствительность реакций, служащих для открытия одного и того же иона, различна.


Например, для иона Cu2+:

Реактив Образующееся соединениеЭффект реакцииОткрываемый минимум, мгПредельное разбавление 1: G1. HCI H Зелёное окрашивание раствора11:500002. NH3СI2Синее окрашивание раствора 0,2 0,21:2500003.Cu2K4Коричневое окрашивание раствора/осадщк0.021:2500000

Таким образом, наиболее чувствительной является реакция №3 с K4, позволяющая обнаружить в 50 раз меньшее количество меди в растворе, чем при действии HCI, и в 10 раз меньшее, чем при действии NH3.


4 Дробный и систематический анализ


Существует два метода выполнения качественного анализа смеси катионов и анионов.

Дробный анализ (метод) состоит в том, что анализируемый раствор делят на большое количество порций и в каждой из них специфическими реакциями обнаруживают отдельные ионы. Специфической реакцией на данный ион называется та реакция, которая позволяет открыть его в смеси с другими ионами специфическими реактивами. Достоинство метода - быстрота проведения анализа. Однако таким путём удаётся открыть только немногие ионы, так как число специфических реакций невелико. Часто в растворе присутствуют ионы, мешающие определению. Если действие этих ионов устранить сложно, то применяют систематический или последовательный анализ.

В ходе систематического анализа соблюдают определённую последовательность обнаружения искомых ионов. В этом случае наряду с реакциями открытия отдельных ионов приходится прибегать к реакциям отделения их друг от друга групповыми реагентами. Порядок разделения ионов групповыми реагентами должен проводиться в определенной последовательности, которую нельзя нарушать. В систематическом ходе анализа ионы выделяют из сложной смеси не по одному, а целыми группами, пользуясь одинаковым отношением их к действию групповых реактивов.

Методика выполнения основных операций полумикроанализа

В основе многих аналитических реакций лежит реакция осаждения. К анализируемому раствору в конической пробирке по каплям добавляют соответствующий реактив. При осаждении необходимо перемешивать раствор. После выпадения осадка надо проверять полноту осаждения. Для этого после того как жидкость над осадком станет прозрачной, добавляют ещё каплю осадителя. Если в растворе не появится муть, полнота осаждения достигнута. В противном случае добавляют ещё несколько капель осадителя. Если для проведения осаждения необходимо нагревать раствор, то пробирки помещают в водяную баню. Для отделения осадков от растворов в качественном анализе применяют центрифугирование. Поэтому анализ проводят в конических центрифужных пробирках. После окончания центрифугирования плотный осадок остаётся на дне пробирки, а центрифугат (надосадочная жидкость) при этом осветляется и от осадка легко отделяется пипеткой или сливанием. Если анализируют осадок, то перед растворением его промывают 2-3 раза небольшим количеством дистиллированной воды, каждый раз отделяя фильтрат центрифугированием. Для уменьшения растворимости осадков в промывную воду добавляют несколько капель осадителя. Растворение осадков проводят путём медленного (по каплям) прибавления растворителя к осадку с одновременными перемешиванием стеклянной палочкой. При необходимости смесь нагревают на водяной бане.


5 Методы разделения смесей катионов


Применение разнообразных групповых реактивов позволило разработать различные аналитические классификации катионов (и анионов). Наибольшее распространение получили сульфидная, кислотно-основная и аммиачно-фосфатная классификации.

Сульфидная классификация, предложена еще в 1871 году Н.А. Меншуткиным и с тех пор многократно подвергалась различным изменениям и совершенствовалась благодаря использованию новых реагентов и методик проведения эксперимента. Сероводородный метод анализа, основанный на сульфидной классификации, имеет два основных недостатка: токсичность сероводорода требует специально оборудованных химических лабораторий; выполнение анализа отнимает много времени.

Схемы качественного химического анализа с применением H2S


Классическая сероводородная (сульфидная) схема разделения катионов на группы

№ группы КатионыГрупповой реагентОбразующиеся соединенияПримечаниеILi+, Na+, , K+, Rb+, Cs+, Mg2+НетКатионы в аммонийном буферном р-ре открывают предварительноIICa2+, Sr2+, Ba2+, Ra2+(NH4)2CO3 в аммонийном буферном р-реОс. карбонатовОсажд. при нагр.IIIBe2+, Zn2+, Al3+, Y3+, Sc3+, лантаноиды, актиноиды, Ga3+, In3+, Tl3+, Ti(IV), Zr(IV), Hf(IV), Th4+, V(V), Nb(V), Ta(V), Cr3+, U(VI), U(IV), Mn2+, Fe(II), Fe(III), Co2+, Ni2+(NH4)2S в аммонийном буферном р-реОс. сульфидов и гидроксидовКисл. р-р нейтр.NH4OH (без ), насыщают газ. H2S (или добавл. р-р H2S в ацетоне). В присутствии (, F?, )осаждается и II группа, поэтому их предварительно отделяют. можно удалить ионом Fe3+ в ацетатном буфере, с ионами Zr(IV), Ti(IV) - в солянокислом, Sn(IV) - в азотнокислом р-реIVAu3+, Ag+, Bi3+, Cd2+, Cu2+, Cu+, Hg2+, Os(VII), Pb2+, Pd(II), Pd(IV), Rh(III), Ru(III)H2S при рН? 0,5Ос. сульфидов IV и V групп, после действия (NH4)2S2 - осадок сульфидов IV гр.Частично осаждаются In3+, Zn2+. Ионы Pb2+ (не полностью), Ag+,отделяются до осажд. H2S в виде хлоридов в нерастворимом ос. при добавл. HCl к исходной пробеVAs(III, V), Ge(IV), Mo(VI), Re(VII), Sb(III, V), Se(IV), Sn(II, IV), Te(IV)(NH4)2S2действуют на осадок сульфидов IV и V группРаствор тиосолей V гр.При слабом нагр. частично попадают W(V), V(III), Au(III), Ir(III, IV), Pt(IV)

В основу классического сероводородного метода положено разделение наиболее часто встречающихся соединений металлов на 5 аналитических групп в зависимости от осаждения катионов тем или иным общим реактивом. При этом для I группы катионов (К+, Na+, NH+), общего реактива нет. Большинство солей этих металлов растворимы. Катионы II группы (Mg2+, Са2+, Ва2+, Sr2+) осаждаются в отличие от соединений I аналитической группы в виде карбонатов и фосфатов и не осаждаются в отличие от катионов III, IV и V групп в виде сульфидов.

Общим реактивом для катионов III аналитической группы (Мп2+, Сг3+, Zn2+, Al3+, Fe3+, Ni2+, Со2+, Т13+) является сульфид аммония или сероводород в щелочной (NH4OH) среде, а для IV группы (Cu2+, Cd2+, Ag+, Bi3+, Hg2+, Pb2+) и V группы (As3+, Sb3+, Sn2+) - сероводород в кислой среде. При этом сульфиды V аналитической группы в отличие от сульфидов IV аналитической группы растворяются в полисульфиде аммония.

После разделения катионов на группы проводится дальше разделение катионов и качественное обнаружение их уже внутри определенной аналитической группы.

Основными недостатками сероводородного метода с позиций токсикологической химии являются: 1) несовершенство осаждения и разделения катионов; 2) длительность анализа; 3) ядовитость газообразного сероводорода и 4) невозможность совместить качественный анализ с количественным при исследовании одной навески объекта. Как правило, после качественного анализа необходимо подвергать исследованию новую порцию объекта для количественного определения обнаруженного элемента.

Несовершенство осаждения и разделения сероводородом связано прежде всего с различной степенью растворимости сульфидов металлов. Произведения растворимости сульфидов варьируют в очень широких пределах.

Произведения растворимости сульфидов катионов колеблются не только при переходе от одного катиона к другому, они не всегда стабильны даже для одного и того же катиона. Например, произведение растворимости МпБ телесного цвета 1-10 15, а МпБ зеленого цвета 6,2-10 22. Первая модификация получается при насыщении раствора соли Мп2+ на холоду, вторая - при нагревании.

Произведения растворимости сульфидов колеблются и в зависимости от условий их образования: pH среды, температуры раствора, скорости и продолжительности насыщения раствора газообразным сероводородом и других факторов.

При анализе по сероводородной схеме часто предварительно выделяют из анализируемого вещества элементы в виде летучих соединений с помощью реактивов, указанных в скобках: Si (HF); Se, As, Ge (HBr + Br2); Os (HNO3); Ru (HClO4); Re (H2SO4), а также группу благородных металлов: Au, Ag, Pt, Pd (Ir, Rh, Hg выделяются неполно).

Осаждение ведут из горячего раствора, насыщая его газообразным H2S, выдерживают при 70-90°С 10-15 мин, охлаждают и вновь насыщают H2S, закрывают сосуд и оставляют на 15 мин. В присутствии молибдена после пропускания H2S добавляют немного Н2О2 и вновь насыщают H2S.

Из смеси сульфидов выделяют V группу действием избытка (NH4)2S2 при слабом нагревании.

Для осаждения III группы кислый раствор нейтрализуют NH4OH (без ), добавляют избыток его, насыщают H2S и снова добавляют NH4OH. В присутствии мешающих анионов вместе с III осаждается и II группа, поэтому эти анионы предварительно должны быть удалены. В современных условиях это проще всего сделать с помощью анионита. Кроме того, наиболее часто встречающийся ион можно осадить ионами Fe3+ в ацетатном буфере при нагревании, а также ионами Zr(IV) или Ti(IV) в солянокислом и ионами Sn(IV) - в азотнокислом растворе.

Осаждение II группы проводится (NH4)2СО3 при нагревании в аммонийном буферном растворе.

Как видно из приведенной схемы классификации, при действии сероводорода на раствор сложной смеси катионов всех групп катионы I и II групп не выпадают в осадок в виде сульфидов, а осаждаемые сульфиды могут быть выделены в определенной последовательности. Эта последовательность обуславливается концентрацией сульфид-иона, которая, в свою очередь, непосредственно зависит от концентрации ионов водорода в анализируемом растворе. Концентрация ионов серы в растворе регулируется слабой сероводородной кислотой, диссоциирующей по двум ступеням с константами диссоциации К1 и К2 соответственно:


H2S Û HS- + H+ К1 = 8,9 ? 10-8Û S2- + H+ К2 = 1,3 ? 10-13


Для реакции H2S ?Û 2H+ + S2?? константа диссоциации



Концентрация насыщенного раствора H2S при нормальном давлении и 25°С равна или меньше 0,1 моль?л-1 Тогда 2 ? = 1,2 ? 10-21 моль?л-1, т. е. концентрация сульфид-иона обратно пропорциональна квадрату концентрации ионов водорода. Таким образом, изменяя концентрацию ионов водорода, можно управлять концентрацией ионов серы.

Сравнение величин произведений растворимости сульфидов позволяет разделить их на две группы. Одна из них имеет значения произведений растворимости порядка 10-15-10-23, другая - порядка 10-27-10-50. Граница пролегает между сульфидами цинка и кадмия: ПРZnS = 2,5?× 10-22; ПРCdS = 7,9?× 10-27.

Создав концентрацию ионов серы, позволяющую полностью осадить сульфид кадмия и оставить в растворе ион цинка, можно отделить сульфид кадмия и все менее растворимые сульфиды от сульфида цинка и более растворимых сульфидов.

Условной границей полного осаждения кадмия можно считать его концентрацию, равную 10-6 моль?л-1. Для ионов серы


Моль?л-1.


Такая концентрация сульфид-иона образуется в растворе H2S при концентрации H+, равной

Концентрации катиона в анализируемом растворе обычно близки к 0,01 моль?л-1. Если концентрацию цинка принять равной этой величине, то произведение концентраций ионов ? = 0,01 ? 7,9 ? 10-21 = 7,9 ? 10-23, что меньше величины произведения растворимости сульфида цинка ПРZnS = 2,5 ? 10-22.

Следовательно, ион Zn2+ и все ионы, для которых произведения растворимости сульфидов больше, чем для ZnS, осаждаться не будут.

Равновесие в системе осадок - раствор устанавливается не сразу. Известно, что растворимость соединений меняется с течением времени (наибольшая растворимость - у свежеосажденных соединений). В случае сульфидов это связано, прежде всего с тем, что они осаждаются в метастабильных и более растворимых модификациях, которые при хранении сульфидов переходят в более стабильные и менее растворимые формы. Эти формы различаются структурой кристаллической решетки, иногда цветом (a-MnS -розовый, b -MnS - зеленый) и величинами произведений растворимости. Поэтому при расчетах условий разделения сульфидов путем регулирования кислотности раствора следует использовать табличные значения ПР только свежеосажденных форм (как правило, более растворяемых).

В процессах разделения ионов в виде сульфидов заметную роль играют процессы сорбции и после осаждения (приводящие к неполному разделению, в частности кадмия и цинка), а также образование устойчивых коллоидов.

Кислотно-основная классификация основана на различной растворимости гидроксидов, хлоридов, сульфатов. Групповыми реактивами этого метода являются растворы кислот и оснований.


По кислотно-основной классификации катионы делят на шесть аналитических групп

K+, Na+, Mg2+НетКатионы в раствореХлориды, сульфаты и гидроксиды растворимы в водеIIBa2+, Sr2+, Ca2+H2SO4Ос.: BaSO4, SrSO4, (CaSO4)Сульфаты нерастворимы в воде и кислотах. Са2+ частично остается в р-реIIIAg+, Hg22+, Pb2+HClОс.: AgCl, Hg2Cl2, (PbCl2)Хлориды нерастворимы в воде и разбавленных кислотах. Pb2+частично остается в р-реIVZn2+, Al3+, Sn(II,IV), Cr3+NaOH + H2O2Гидроксиды высших степеней окисления р-мы в изб. NaOHVSb(III,V), Bi3+, Mn2+, Fe(II,III)NH4OH + H2O2Ос.: HSbO3, Bi2O3 ? xH2O, MnO(OH)2, Fe2O3 ? xH2OГидроксиды нерастворимы в изб. NH4OHVICo2+, Ni2+, Cu2+, Cd2+, Hg2+, (Mg2+)NH4OH + H2O2Гидроксиды растворимы в изб. NH4OH; гидроксид магния растворим в р-рах солей аммония

Оптимизировать процедуры разделения или открытия ионов и интерпретировать наблюдаемые сигналы помогают предварительные испытания. В ходе предварительных испытаний:

Определяют рН с помощью универсального индикатора.

Проверяют отношение к 6 М HCl. Наличие нерастворимого осадка указывает на возможное присутствие хлоридов III группы, сульфатов II группы, SbOCl, BiOCl, PbSO4.

Проверяют отношение к избытку 2 М NaOH. Растворение осадка указывает на наличие амфотерных гидроксидов.

Образец растворяют в 2 М HCl и в отдельных пробах дробным методом обнаруживают катионы , K+, Na+, Ca2+, Fe3+, Co2+, Mn2+, Ni2+, Cr3+, Mg2+, используя специфические и селективные реакции и маскируя мешающие ионы.

Выполнение анализа по кислотно-основной схеме имеет определенные преимущества:

·используются кислотно-основные свойства элементов, способность к комплексообразованию, амфотерность гидроксидов, что обусловлено их положением в периодической системе элементов Д.И. Менделеева;

·исключается токсичное действие сероводорода;

·сокращаются затраты времени на анализ.

·Метод прост, не требует дорогостоящих реактивов, легко осваивается.

·Реализуется принцип систематического хода анализа.

Недостатки метода:

·1. Нечеткость разделения катионов по группам из-за относительно высокой растворимости PbCl2 и CaSO4 в воде, различного отношения Sb(III) и Sb(V) к избытку NaOH, частичного растворения Cu(OH)2 в избытке NaOH.

·2. Необходимость выполнения трудоемкой и длительной операции переведения сульфатов II группы в карбонаты.

·3. Метод неприменим в присутствии ряда анионов, в том числе фосфат-иона. В этом случае либо проводят сложные операции удаления мешающих анионов, либо выполняют анализ по аммиачно-фосфатному методу.

Кислотно-основный метод (как и сероводородный) значительно осложняется присутствием РО43- -иона, поэтому при наличии этого иона приобретает определенные преимущества аммиачно-фосфатный метод.

Метод основан на использовании различной растворимости фосфатов в воде, сильных и слабых кислотах, щелочах и растворе аммиака. схеме анализа. Кроме того, в данном случае необходимо дробным методом установить наличие или отсутствие ионов Na+, K+, NH4+ которые будут введены в дальнейшем ходе анализа, а также катионов, способствующих или затрудняющих проведение анализа. К ним относятся Fe2+, Fe3+, As(III), As(V), Sn(II), Sn(IV), Cr3+.


Классификация катионов по аммиачно-фосфатной схеме

№ группыКатионыГрупповой реагентОбразующиеся соединенияПримечанияI Na+, K+Нет Фосфаты р-мы в водеIII подгруппа: Li+, Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Fe2+ II подгруппа: Al3+, Cr3+, Fe3+, Bi3+(NH4)2HPO4 + NH4OHLi3PO4, MgNH4PO4, CaHPO4, MnNH4PO4, FeHPO4, SrHPO4, BаHPO4, AlPO4, CrPO4, FePO4, BiPO4Фосфаты нерастворимы в воде и NH4OH. Фосфаты I подгруппы р-мы в СН3СООН. Фосфаты II подгруппы нерастворимы в СН3СООН, р-мы в HClIIICo2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+NH4OHФосфаты р-мы в NH4OHIVAs(III,V), Sb(III,V), Sn(II,IV)HNO3HSbO3, H2SnO3, H3AsO4Метаоловянная и метасурьмяная кислоты нерастворимы и адсорбируют H3AsO4VAg+, Pb2+HClAgCl, Hg2Cl2, PbCl2Хлориды нерастворимы в воде и разбавленных кислотах

После выполнения предварительных испытаний приступают к систематическому ходу анализа.

Преимущества метода:

·Не применяется сероводород.

·Не мешает присутствие иона

·Сохраняя все достоинства систематического анализа, отличается экспрессностью и относительно высокой четкостью разделения.

Недостатки метода

·Необходимость открытия большого числа ионов дробными методами на стадии предварительных испытаний.

·В ходе анализа требуется добавление SnCl4, Na2HPO4, FeCl3.

·Необходимость перевода солянокислых растворов в азотнокислые и обратно.


2. Количественный анализ


Количественный анализ - раздел аналитической химии, задачей которого является определение количества (содержания) элементов, ионов, функциональных групп, соединений или фаз в анализируемом объекте. Наряду с качественным анализом количественный анализ является одним из основных разделов аналитической химии. В зависимости от объектов исследования различают неорганический и органический анализ, разделяемый, в свою очередь, на элементный, функциональный и молекулярный анализ. Помимо специфичности и чувствительности, важной характеристикой методов количественного анализа является точность, то есть значение относительной ошибки определения; точность и чувствительность в количественном анализе выражают в процентах. К классическим химическим методам количественного анализа относится гравиметрический анализ, основанный на точном измерении массы определяемого вещества, а также объёмный анализ. Последний включает титриметрический анализ - метод измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - метод измерения объёма анализируемых газообразных продуктов. В рамках курса аналитической химии подробно изучаются гравиметрический и титриметрический методы анализа.


1 Гравиметрический метод анализа


Гравиметрия (от лат. gravis-тяжелый и греч. metreo-измеряю) - совокупность методов количественного анализа, основанных на измерении массы определяемого компонента, выделенного из анализируемой пробы либо в свободном состоянии, либо в виде соединения известного состава. Аналитическим сигналом в гравиметрии является масса. Гравиметрию можно применять для определения практически любых компонентов анализируемого объекта, если их содержание в образце превышает 0,1%. Гравиметрия является безэталонным методом. Основным преимуществом гравиметрии является высокая надежность результатов. Погрешность определения не превышает 0,1-0,2%. Недостатки связаны с большой трудоемкостью и длительностью аналитических операций, трудностями при определении очень малых количеств веществ, а также невысокой селективностью. Поэтому в массовых лабораторных анализах его по возможности заменяют другими методами. В гравиметрическом анализе обычно выделяют две группы методов: осаждение и отгонка. Наибольшее практическое значение имеют методы осаждения. Из части исследуемого вещества известной массы (навески) определяемый компонент выделяют тем или иным способом в виде какого-либо соединения.

Непосредственное выделение возможно только в немногих случаях, например, удаление гигроскопической или кристаллизационной воды нагреванием. Обычно же навеску твердого вещества переводят в раствор, из которого с помощью подходящего реагента выделяют определяемый компонент в виде практически нерастворимого вещества (осаждаемая форма). Осадок отделяют фильтрованием, декантацией или другими способами, отмывают от следов сорбированных компонентов, часто переосаждают. Затем его высушивают или прокаливают до образования устойчивого соединения строго определенного состава (весовая, гравиметрическая форма), массу которого измеряют.

Например, при определении Са2+ осаждаемая форма - СаС2О4, весовая форма - СаО или СаСО3. Зная массы навески (а) и весовой формы (b), рассчитывают содержание х (% по массе) определяемого компонента:

= (bF/a). 100 (2)


Множитель F, называемый гравиметрическим фактором, равен содержанию определяемого компонента в 1 г его весовой формы:

MМ1/nМ2 (3),


где m и n - стехиометрические коэффициенты в уравнении химического превращения выделяемого компонента в его весовую форму, М1 - молярная масса определяемого компонента, М2 - молярная масса гравиметрической формы. Например, при определении железа по массе Fe2O3 m= 2, n = 1. В тех случаях, когда определяемые компоненты образуют летучие соединения, могут применяться методы отгонки. Разложение проб с выделением газообразных продуктов достигается прокаливанием или действием реагентов (кислот, щелочей и др.) при нагревании. Летучий компонент пропускают через раствор-поглотитель, и по увеличению массы раствора вычисляют количество выделившегося из пробы газообразного продукта (прямые методы). Массу остатка вещества можно определять после удаления из него летучего продукта. Содержание компонента в таких случаях находится по разности массы до и после отгонки (косвенные методы).


2 Титриметрический метод анализа


Титриметрическими называют методы анализа, основанные на измерении количества реагента, израсходованного для полного протекания реакции с определяемым веществом. Количество реагента определяют чаще всего путем точного измерения объема его раствора, пошедшего на реакцию. Титрование - это операция, при которой к раствору исследуемого вещества постепенно добавляют небольшие порции стандартного раствора реагента до того момента, пока затраченное количество реагента не станет эквивалентным количеству определяемого вещества. Реагенты, используемые при титриметрических определениях, называют титрантами. Момент титрования, при котором количество добавленного титранта становится эквивалентным количеству определяемого вещества, называется точкой эквивалентности. Вещества реагируют между собой в эквивалентных количествах. Эквивалент - условная или реальная частица, которая может присоединять, высвобождать, замещать один ион водорода в кислотно-основных реакциях или быть эквивалентна одному электрону в окислительно-восстановительных реакциях.


где n - химическое количество, N - молярная концентрация эквивалента, а V - объем, в котором растворено вещество, то для двух стехиометрически реагирующих веществ справедливо соотношение:


Следовательно, можно найти неизвестную концентрацию одного из веществ, если известны объем его раствора и объем и концентрация прореагировавшего с ним вещества. Расчет массы определяемого вещества (А), содержащегося во взятом на титрование объеме титруемого раствора, проводят по следующей формуле:

(А) = Vт·Nт·Э(А) (5)


где: m(A) - масса определяемого вещества, г; Vт - объем титранта, израсходованного на титрование, л; Nт - молярная концентрация эквивалента титранта, моль/л; Э(А) - молярная масса эквивалента определяемого вещества, г/моль-экв.

Реакция титрования должна отвечать следующим требованиям: - быть строго стехиометричной;

протекать быстро;

протекать количественно;

должен существовать надежный способ фиксирования точки эквивалентности.

Экспериментально окончание процесса титрования производят в момент изменения цвета индикатора или какого-либо физико-химического свойства раствора. Эта точка, называемая конечной точкой титрования, в общем случае не совпадает с теоретически рассчитанной точкой эквивалентности. Методы титриметрического анализа классифицируют:

по типу химической реакции, лежащей в основе анализа веществ. В соответствии с этим титриметрические определения подразделяют на следующие основные методы: кислотно-основное, комплексометрическое, окислительно-восстановительное и осадительное титрование.

по способу выполнения (прямое, обратное, заместительное, косвенное, реверсивное);

по способу выполнения параллельных определений (метод отдельных навесок и метод пипетирования).

Измерение объемов. Для точного измерения объемов в количественном химическом анализеприменяются мерные колбы, пипетки и бюретки.

Мерные колбы. Они служат для приготовления стандартных растворов и для разбавления исследуемых растворов до определенного объема. Это плоскодонные колбы с длинным узким горлом, на которое нанесена круговая метка. Объем, указанный на стенке колбы, соответствует объему жидкости (при температуре калибрования), если колба наполнена так, что нижняя часть мениска жидкости касается метки, причем доведение объема жидкости до метки должно осуществляться так, чтобы глаза наблюдателя и метка находились на одном уровне (метка сливается в прямую линию). На горле колбы над меткой не должно быть капель жидкости, внутренние стенки колбы должны быть чистыми, и жидкость должна смачивать их ровным слоем. Закрывают колбы специальными притертыми пробками. Нагревать мерные колбы нельзя, иначе может произойти деформация стекла, что повлечет за собой изменение их вместимости.

Стандартные растворы. Для проведения титриметрического анализа необходимо знать концентрацию титранта. Титрант с известной концентрацией называют стандартным раствором. По способу приготовления различают первичные и вторичные стандартные растворы. Первичный стандартный раствор готовят растворением точного количества чистого химического вещества известного стехиометрического состава в определенном объеме растворителя. Вторичный стандарт получают следующим образом: готовят раствор с приблизительной концентрацией, близкой к желаемой, и определяют его концентрацию (стандартизируют) по подходящему первичному стандарту.

Первичные стандарты должны отвечать ряду требований:

) состав соединения должен строго соответствовать химической формуле. Количество примесей не должно превышать 0,05%.

) вещество должно быть устойчивым при комнатной температуре, не должно быть гигроскопичным, окисляться атмосферным кислородом, поглощать диоксид углерода из воздуха, изменять массу при высушивании.

) вещество должно обладать по возможности большой молекулярной массой, чтобы уменьшить влияние ошибки взвешивания.

Для приготовления многих стандартных растворов можно воспользоваться фиксаналами. Фиксанал представляет собой ампулу, в которой запаяно точно известное количество стандартного вещества или раствора.


2.3 Окислительно-восстановительное титрование. Иодометрия


Иодометрическим титрованием называется титриметрический метод анализа, основанный на определении количества йода, затраченного для полного протекания реакции с веществом, обладающим восстановительными свойствами, либо выделившегося в результате реакции KI с веществом, обладающим окислительными свойствами. В основе йодометрических определений лежит следующее равновесие:


2?=3I- ; Е0 = + 0,545 В.


В качестве титрантов в йодометрическом титровании используют йод и тиосульфат натрия.

Пример. Стандартизация раствора тиосульфата натрия. Для стандартизации растворов тиосульфата натрия используют бихромат калия. Реакции Na2S2O3 с K2Cr2O7 и другими сильными окислителями протекают нестехиометрично, поэтому стандартизацию раствора тиосульфата натрия проводят способом заместительного титрования: при взаимодействии K2Cr2O7 с избытком KI образуется эквивалентное первому веществу количество иода, который затем титруют стандартизируемым раствором Na2S2O3:

O72- + 6I- + 14H+ = 2Cr3+ +3I2 + 7H2O+ S2O32- = 2I- + S4O62- (или - + S2O32- = 3I- + S4O62-)


Конечную точку титрования в иодометрии обнаруживают, чаще всего, по исчезновению или появлению окраски йод-крахмального комплекса.

Кислотно-основное титрование. К методу кислотно-основного титрования относят титриметрические определения, в основе которых лежит реакция:+ + ОН- = Н2О


По этому методу возможно определение различных кислот, оснований, некоторых солей, определение жесткости воды, азота в органических соединениях и т.д. В качестве титрантов обычно используют растворы хлороводородной и серной кислот, растворы щелочей.

Окислительно-восстановительное титрование. Окислительно-восстановительным титрованием называют группу титриметрических методов анализа, основанных на использовании окислительно-восстановительных реакций. К важнейшим методам окислительно-восстановительного титрования относят иодометрию, перманганатометрию, бихроматометрию, цериметрию и др.

Перманганатометрия. Перманганатометрическим титрованием называется

титриметрический метод анализа, основанный на использовании в качестве титранта раствор KMnO4. Поскольку титрант имеет интенсивную окраску, перманганатометрическое титрование проводят без индикатора. Конечную точку титрования обнаруживают по появлению или исчезновению окраски KMnO4. Перманганатометрическое титрование чаще всего проводят в кислой среде, реже - в нейтральной. Для создания кислой среды применяют серную кислоту, поскольку азотная кислота сама является сильным окислителем, а хлороводородная, напротив, может окисляться титрантом. В основе метода лежит следующее равновесие:


MnO4- + 5? + 8H+ = Mn2+ + 4H2O; Е0 = +1,51 В.


Бихроматометрия. Бихроматометрией называется титриметрический метод анализа, основанный на использовании в качестве титранта раствор K2Cr2O7. В основе метода лежит следующее равновесие:


Сr2O72- + 14H+ + 6?? 2Cr3+ + 7H2O; Е0 = +1,33 В


Для обнаружения конечной точки в бихроматометрическом титровании используют окислительно-восстановительные индикаторы.


4 Комплексонометрическое титрование


Комплексонометрическое титрование основано на реакциях образования хелатных комплексов при взаимодействии катионов металлов с аминополикарбоновыми кислотами (комплексонами). Из многочисленных аминополикарбоновых кислот наиболее часто используют этилендиаминтетрауксусную кислоту (H4Y):

Вследствие низкой растворимости в воде сама кислота не подходит для приготовления раствора титранта. Для этого обычно используют дигидрат ее динатриевой соли Na2H2Y2H2O (ЭДТА, трилон Б). Реакции взаимодействия различных катионов с ЭДТА в растворе можно представить уравнениями:


Са2+ +H2Y2- =CaY2-+2H++ +H2Y2-=BiY- +2H+++H2Y2- =ThY+2H +


Видно, что независимо от заряда катиона образуются комплексы с соотношением компонентов 1:1. Следовательно, молярная масса эквивалента ЭДТА и определяемого иона металла равны их молекулярным массам. Степень протекания реакции зависит от рН и константы устойчивости комплексоната. Катионы, образующие устойчивые комплексонаты, например, Fe(III), могут быть оттитрованы в кислых растворах. Ионы Са(II), Mg(II) и другие, образующие сравнительно менее устойчивые комплексонаты, титруют при рН? 9 и выше. Конечную точку титрования определяют с помощью металлоиндикаторов - органических веществ, изменяющих свою окраску (или флуоресценцию) в зависимости от концентрации катионов металла в растворе. Чаще всего в анализе используются так называемые металлохромные индикаторы, образующие с катионами металлов внутрикомплексные соединения, окраска которых отличается от окраски свободного индикатора, причем комплекс определяемого металла с комплексоном прочнее комплекса этого металла с индикатором. Наиболее распространенный металлохромный индикатор - эриохром черный Т (хромоген). Его используют в твердом виде: индикатор смешивают в отношении 1:200 с каким-либо индифферентным наполнителем, например, NaCl или KCl.


3. Разделение предложенной смеси


Исходная проба:


AgNO3, CuSO4, NiS04, ZnCl2, MnCl2, NH4OH


AgNO3 + HCl = AgCl? + HNO3 белый осадок MnCl2 + 2NaOH = Mn(OH)2? + 2NaCl студнеобразный светло-розовый осадок ZnCl2 + 4NaOH = Na2ZnO2 + 2NaCl + 2H2OОсадокAgCl + 2NH4OH = Cl + 2H2O Mn(OH)2 + H2SO4 = MnSO4 + 2H2O Na2ZnO2 + 2H2SO4 = ZnSO4 + Na2SO4 + 2H2OCl + KI = AgI? + KCl желтый осадок Ag(NH3)2+ + I- = AgI + 2NH3 MnSO4 + H2O2 + 2NH4OH = MnO(OH)2? + (NH4)2SO4 + H2O бурый осадок Mn2+ + H2O2 + 2OH- = MnO(OH)2 + H2O Zn SO4 + 2(NH4)2 + CoCl2 = Co?Zn? + NH4Cl + (NH4)2SO4 голубой осадок Zn2+ + 2- + Co2+ = Co?ZnСuSO4+4 NH?OH" SO4 + 4H?O NiSO4 + 6NH?OH" SO4 + 6H?OРаствор + H2SO4 = CuS04 + 4NH4 + H2SO4 = NiSO4 + 6NH4 NH4OH + H2SO4 = (NH4)2SO4 + H?OCuS04 + H2S = CuS? +H2SO4 темный осадок NiSO4 + H2S = NiS? + H2SO4 черный осадок(NH4)2SO4 +2NaOH = Na2SO4 + 2NH3 + 2H2OCuS + HNO3 = Cu(NO3)2 + H2S NiS + HNO3 = Ni(NO3)2 + H2SCu(NO3)2 + Fe = Fe(NO3)3 + Cu Ni(NO3)2 + Fe = Fe(NO3)3 + Ni


Реакции на анионы

SO42BaCl? + Na?SO4"2NaCl + BaSO4$ белый осадок Ba²?+ SO42-" BaSO4Cl?Ag?+Cl?"AgCl$ AgCl$ + 2NH?OH"Cl+ 2H?O C l+ H?"AgCl? +2NH?NO??2NO??+8H?+3Cu"3Cu²?+4H?O+2NO#; 2NO+O?(воздух)"2NO?


4. Методы и методика определения катиона Сu2+


1 Общая характеристика катионов V аналитической группы


К пятой группе относят катионы d-элементов - Сu2+, Ni2+, Co2+, Cd2+, Hg2+, которые при взаимодействии с водным раствором аммиака в эквивалентных количествах дают осадок гидроксидов, основных солей или амидокомплексов (Hg), растворимых в избытке реагента с образованием амминокомплексов. Групповой реагент - концентрированный раствор аммиака. Образующиеся амминокомплексы M(NH3)42+ имеют различную устойчивость. Наименее устойчивым является ион гексаамминкобальта (II). Он образуется только при достаточно большом избытке NH3. Ион Со2+ легко окисляется до иона Со3+, поэтому под действием окислителей ион Co(NH3)62+ (K = 2,45 ?105) переходит в более прочный ион Co(NH3)63+ (Kуст = 1,62 1035).

Амминокомплексы ртути (II) образуются только при очень большом избытке аммиака и солей аммония. Амминокомплексы могут быть разрушены при действии кислот, связывающих NH3 в ион аммония:


В водных растворах катионы V группы находятся в гидратированном состоянии в виде аквакомплексов типа Cu(H2O)62+. Аквакомплексы Со2+, Ni2+ и Си2+ окрашены: Со(Н2О)62+ - розового цвета, Ni(H2O)62+ - зеленого цвета, Cu(H2O)62+ - голубого цвета. Окраска аквакомплексов - один из характерных признаков, указывающих на наличие этих ионов в растворе. Выпаривание растворов или действие дегидратирующих веществ, например, спирта, вызывает изменение окраски этих ионов. Так, розовая окраска комплекса Со(Н2О)62+ заменяется на синюю вследствие дегидратации комплексных ионов и замены молекул воды другими лигандами.

Кроме аммино- и аквакомплексов катионы V группы способны образовывать и другие комплексные соединения (например, HgBr42-, CdI42, Co(SCN)3-, Cu(S2O3)22- и др.), большинство имеют характерную окраску.

Медь, кобальт и ртуть образуют соединения с разной степенью окисления ионов, поэтому для их обнаружения могут быть использованы реакции окисления-восстановления.

Действие группового реактива на катионы V группы

Раствор NH4OH, прибавленный к растворам солей катионов V группы в эквивалентных количествах, осаждает эти катионы в виде белых или окрашенных основных солей, гидроксидов и амидокомплексов:


CuSO4 + 2NH4OH ? (CuOH)2SO4? + (NH4)2SO4, голубовато-зеленый

CoCl2 + NH4OH ? CoOHCl? + NH4Cl, синий

NiSO4 + 2NH4OH ? (NiOH)2SO4? + (NH4)2SO4, светло-зеленый

CdCl2 + 2NH4OH ? Cd(OH)2? + 2NH4CI, Белый

HgCl2 + 2NH4OH ? Cl? + NH4C1 + 2H2O. белый


В избытке NH4OH эти осадки растворяются с образованием амминокомплексов различной окраски. Образование комплекса гексаамминкобальта (II) и тетраамминртути(II) происходит в присутствии NH4C1 при нагревании:


(CuOH)2SO4 + 8NH4OH ? 22+ + SO42- + 2ОН- + 8Н2О, ярко-синий+ 5NH4OH + NH4+ ? 2+ + Сl- + 6Н2О, желто-бурый

(NiOH)2SO4 + 12NH4OH ? 2Ni(NH3)62+ + SO42- + 2OH- + 12H2O, синий(OH)2 + 4NH4OH ? 2+ + 2OH- + 4H2O, бесцветный

Cl+2NH4OH + NH4+ ? 2+ + Сl- + 2H2O. бесцветный


Гексаамминкобальт(II) окисляется кислородом воздуха до гексаамминкобальта (III) вишнево-красного цвета. В присутствии окислителей (Н2О2) образование гексаамминкобальта (III) происходит мгновенно:


СоС12 + 10NH4OH + 2NH4C1 + Н2О2 ? 2C13 + 12Н2О.


Выполнение реакций. В пять пробирок поместить по 3 капли растворов солей Cu2+, Ni2+, Co2+, Cd2+ и Hg2+ и прибавить в каждую 1-2 капли 2 М раствора NH4OH. К полученным осадкам основных солей меди, никеля и кадмия прибавить при перемешивании несколько капель концентрированного раствора NH4OH до растворения осадков. Осадок основной соли кобальта разделить на две части. К одной прибавить 3-4 капли 3% раствора Н2О2, а затем обе части осадка растворить, прибавив несколько капель концентрированного раствора NH4OH и насыщенного раствора NH4C1. Осадок амидокомплекса ртути растворить в нескольких каплях концентрированного раствора NH4OH и насыщенном растворе NH4C1 при нагревании.


2 Частные аналитические реакции ионов Сu2+


Гексацианоферрат(II) калия K4 осаждает ион Сu2+ в виде гексацианоферрата(II) меди красно-бурого цвета:


2Cu2+ + Fe(CN)62- ? Cu2?.


Осадок не растворяется в разбавленных кислотах, но разлагается щелочами с образованием Сu(ОН)2.

Выполнение реакции. К 2-3 каплям раствора CuSO4 прибавить 1-2 капли реактива. Осадок разделить на две части, к одной прибавить 2-3 капли 2 М раствора НС1, к другой - 2-3 капли 2 М раствора NaOH.

Тиосульфат натрия Na2S2O3 при нагревании осаждает сульфид одновалентной меди:


2CuSO4 + 2Na2S2O3 + H2O ? Cu2S? + 2S + 2Na2SO4 + Н2SO4.


Выполнение реакции. В пробирку поместить 2-3 капли раствора CuSO4, прибавить 4-5 капель воды, 2-3 капли 1 М раствора H2SO4 (до явно кислой реакции) и полуторакратное количество насыщенного раствора тиосульфата натрия Na2S2O3. Перемешать, нагреть. Образование темно-бурого осадка смеси Cu2S с серой свидетельствует о присутствии меди в растворе. Так как Cd2+ при действии тиосульфата натрия в кислой среде не образует осадка сульфида, эта реакция может быть использована для отделения Cu2+ от Cd2+.

Раствор аммиака, взятый без избытка, образует с раствором соли меди осадок Cu(OH)2SO4 сине-зеленого цвета. Осадок растворим в разбавленных кислотах и в избытке аммиака. При растворении в избытке аммиака образуется комплексное соединение 2-, окрашенное в ярко-синий цвет.


SO4 + 10NH4OH ? 2(OH)2 + (NH4)2SO4 + 8H2O.


Выполнение реакции. К 5-6 каплям раствора, содержащего ионы меди, прибавляют 2-3 капли концентрированного аммиака и взбалтывают. Интенсивно-синяя окраска раствора указывает на присутствие ионов Cu2+.

4. Реакция окрашивания пламени. Соли меди окрашивают бесцветное пламя горелки в синий или зеленый цвет

Определение меди методом заместительного титрования, которое основано на реакции:


Cu2+ + 4I- = 2CuI? + I2.


Медь(II) в данном случае выступает в качестве окислителя. В результате окисления иодид-ионов образуется иод, количество которого определяют, оттитровывая его раствором тиосульфата натрия. Количество тиосульфата натрия эквивалентно количеству выделившегося иода, которое, в свою очередь, эквивалентно и количеству меди(II), вступившей в реакцию. Таким образом, по объему раствора Na2S2O3, израсходованного на титрование иода, рассчитывают количество вступившей в реакцию меди(II).

Ход работы

) Бюретку готовят к титрованию, как обычно, и заполняют ее раствором тиосульфата натрия.

) Готовят мерную колбу с анализируемым раствором соли меди и доводят объем раствора до метки дистиллированной водой.

) В колбу для титрования помещают 15-20 мл 10% раствора KI. Вносят туда же пипеткой 10 мл раствора соли меди из мерной колбы и 3 мл раствора H2SO4 (1:4). Колбу для титрования накрывают часовым стеклом и ставят в темное место приблизительно на 5 минут.

) Побуревший от выделившегося иода раствор титруют из бюретки раствором тиосульфата натрия до тех пор, пока окраска не станет соломенно-желтой. После этого прибавляют несколько капель раствора крахмала и продолжают титровать до обесцвечивания синего раствора.

) Титрование проводят 3 раза. По полученному усредненному значению объема тиосульфата натрия рассчитывают содержание меди (в граммах) в выданной пробе, не забывая при этом учесть объем аликвоты взятого на титрование раствора.

) Рассчитывают относительную погрешность определения


Заключение


Значение аналитической химии определяется необходимостью общества в аналитических результатах, в установлении качественного и количественного состава веществ, уровнем развития общества, общественной потребностью в результатах анализа, так же и уровнем развития самой аналитической химии.

Цитата из учебника по аналитической химии Н.А. Меншуткина 1897 года выпуска: "Представив весь ход занятий по аналитической химии в виде задач, решение которых предоставлено занимающемуся, мы должны указать на то, что для подобного решения задач аналитическая химия даст строго определенный путь. Эта определенность (систематичность решения задач аналитической химии) имеет большое педагогическое значение. Занимающийся приучается при этом применять свойства соединений к решению вопросов, выводить условия реакций, комбинировать их. Весь этот ряд умственных процессов можно выразить так: аналитическая химия приучает химически думать. Достижение последнего представляется самым важным для практических занятий аналитической химией".


Список использованной литературы


1.Алексеев В.Н. Курс качественного химического полумикроанализа. - М.: Химия,1979. - 584 с.

.Бессероводородные методы качественного полумикроанализа /под общ. ред. Крешкова А.П. - М.: Высш.шк. 1971. - 222 с.

.Васильев В.П. Аналитическая химия: В четырех частях. - М.: Высш. шк., 2004.

.Васильев А.М. Сборник задач по аналитической химии. - М.: Госхимиздат. - 1985, 275 с.

.Золотов Ю.А. Основы аналитической химии. кн. 1. - М.: Высш. шк., 2004. - 360 с.

.Лурье Ю.Ю. Справочник по аналитической химии. - М.: Химия 1971.- 453 с.

.Мурашова В.И., Тананаева А.Н., Ховякова Р.Ф. Качественный химический дробный анализ. - М.: Химия, 1976. - 279 с.

.Харитонов Ю.Я. Аналитическая химия. Аналитика 1. Общие теоретические основы. Качественный анализ. - М.: Высш. шк., 2001. - 615 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических, элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии ОН"-ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги.

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом-, функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Понятия количественные и качественные методы в психологии

Определяя методы как пути познания, С.Л. Рубинштейн отмечал, что методология должна быть осознанной и не превращаться в форму, механически накладываемую на конкретное содержание науки. Рассмотрим вопрос, насколько осознаны пути познания в психологии и как исследователи понимают и определяют количественные и качественные методы.

В качестве основных психологических методов С.Л. Рубинштейн в «Основах общей психологии » называет наблюдение, эксперимент, приемы изучения продуктов деятельности. В данном перечне не находится места количественным методам.

В 70-е годы в отечественной психологии распространение получила вторая классификация методов психологического исследования, созданная Б.Г. Ананьевым.

Он выделяет следующие группы методов:

  1. Организационные;
  2. Эмпирические;
  3. Методы обработки данных;
  4. Интерпретационные методы.

Количественные и качественные методы были отнесены к методам обработки данных. Количественные методы он определяет как математико-статистические приемы обработки психологической информации, а качественные методы – это описание тех случаев, которые наиболее полно отражают типы и варианты психических явлений и являются исключением общих правил.

Классификацию Б.Г. Ананьева подверг критике представитель ярославской школы В.Н. Дружинин, предложив свою классификацию.

По аналогии с другими науками он выделяет три класса методов в психологии:

  1. Эмпирические;
  2. Теоретические;
  3. Интерпретационные.

Качественные и количественные методы отдельно в классификации тоже не оговариваются, но предполагается, что они помещены в раздел эмпирических методов, что отличается от классификации Б.Г. Ананьева. Существенно дополнил классификацию Б.Г. Ананьева представитель ленинградской школы психологов В.В. Никандров. Он относит количественные и качественные методы к неэмпирическим методам в соответствии с критерием «этапности психологического процесса». Автор под неэмпирическими методами понимает «научно-исследовательские приемы психологической работы вне контакта исследователя и индивида.

Помимо сохранившихся отличий в классификациях С.Л. Рубинштейна и Б.Г. Ананьева, существуют терминологические разночтения в понимании количественных и качественных методов.

Не дается точного определения этих методов в работах В.В. Никандрова. Качественные методы он определяет функционально, с точки зрения результата и называет их:

  1. Классификация;
  2. Типологизация;
  3. Систематизация;
  4. Периодизация;
  5. Психологическая казуистика.

Количественный метод он подменяет определением количественной обработки, которая направлена в основном на формальное, внешнее изучение объекта. В качестве синонимов В.В. Никандров употребляет такие выражения как количественные методы, количественная обработка, количественное исследование. К основным количественным методам автор относит методы первичной и вторичной обработки.

Таким образом, проблема терминологической неточности является достаточно актуальной и приобретает новое звучание, когда исследователи стремятся отнести количественные методы к новым научным разделам «Психометрия» и «Математическая психология».

Причины терминологических расхождений

Можно назвать целый ряд причин, в результате которых нет строгого определения количественных и качественных методов в психологии:

  • Количественные методы в рамках отечественной традиции не получили однозначно строгого определения и классификации, а это говорит о методологическом плюрализме;
  • Количественные и качественные методы в традиции ленинградской школы рассматриваются как неэмпирический этап исследования. Московская школа трактует эти методы как эмпирические и возводит их до статуса методологического подхода;
  • В терминологическом смешении понятий количественные, формальные, квантативные, математико-статистические, наблюдается конвенционализм, который сложился в психологическом обществе относительно определения этих количественных и качественных методов;
  • Заимствование из американской традиции деления всех методов на количественные и качественные методы. Количественные методы, точнее исследования, подразумевают выражение и измерение результатов в количественных показателях. Качественные методы рассматриваются как «гуманитарные» исследования;
  • Определение однозначного места и соотношение количественных и качественных методов, скорее всего, приводит к тому, что количественные методы подчиняются качественным методам;
  • Современная теория метода уходит от классификации методов только на одном основании и строгом определении процедуры метода. Методологи выделяют в теории три направления:
    1. Совершенствование традиционной эмпирической модели;
    2. Критика эмпирической количественной модели;
    3. Анализ и апробация альтернативных исследовательских моделей.
  • Разные направления развития теории метода обнаруживают тенденцию тяготения исследователей к качественным методам.

Количественные методы

Цель практической психологии заключается не в установлении закономерностей, а в понимании и описании проблем, поэтому она использует как качественные, так и количественные методы.

Количественные методы представляют собой приемы обработки цифровой информации, потому что носят математический характер. Такие количественные методы как категоризованное наблюдение, тестирование, анализ документов и даже эксперимент дают возможность получения информации для диагностики проблемы. Эффективность работы определяется на завершающем этапе. Основная часть работы – беседы, тренинги, игры, дискуссии – проводится с помощью качественных методов. Из количественных методов наибольшей популярностью пользуется тестирование.

Количественные методы имеют широкое применение в научных исследованиях и в социальных науках, например, при проверке статистических гипотез. К количественным методам прибегают для обработки результатов массовых опросов общественного мнения. Для создания тестов психологи применяют аппарат математической статистики.

Методы количественного анализа делятся на две группы:

  1. Методы статистического описания. Как правило, они направлены на получение количественных характеристик;
  2. Методы статистического вывода. Дают возможность полученные результаты корректно распространять на все явление, делать заключение общего характера.

С помощью количественных методов выявляются устойчивые тенденции и строятся их объяснения.

Недостатки количественного метода контроля связаны с его ограниченностью. Эти методы оценки знаний в сфере преподавания психологии могут быть использованы только для промежуточного контроля, проверки знаний терминологии, хрестоматийных экспериментальных исследований или теоретических концепций.

Качественные методы

Повышенный интерес и популярность, качественные методы приобретают только в последнее время, что связано с запросами практики. В прикладной психологии сфера применения качественных методов очень широка:

  • Социальная психология осуществляет гуманитарную экспертизу социальных программ – пенсионная реформа , реформа образования, здравоохранения – с помощью качественных методов;
  • Политическая психология. Качественные методы здесь необходимы для построения адекватной и эффективной избирательной кампании, формирования позитивного имиджа политиков, партий, всей системы государственного управления. Важными здесь будут не только количественные показатели рейтинга доверия, но и причины этого рейтинга, пути его изменения и др.
  • При помощи качественных методов психология средств массовой коммуникации Исследует степень доверия тем или иным печатным изданиям, конкретным журналистам, программам.

Решающую роль в развитии качественных методов в психологии, таким образом, сыграла необходимость диалога психологической науки с различными сферами практической деятельности.

Качественные методы ориентируются на анализ информации, которая в основном представлена в словесной форме, поэтому возникает необходимость эту словесную информацию сжать, т.е. получить её в более компактном виде. В этом случае выступает кодирование, как основной прием сжатия.

Кодирование предполагает выделение смысловых сегментов текста, их категоризацию и реорганизацию.

Примерами сжатия информации являются схемы, таблицы, диаграммы. Таким образом, кодирование и наглядное представление информации являются основными приемами качественного анализа.

Уже в ходе исследования можно предполагать о его результатах, но обычно эти вы-воды рассматривают как предварительные, а более достоверные и основательные данные можно получить лишь в результате тщательного анализа.

Анализ данных в социальной работе заключается в интеграции всей собранной информации и в приведении ее к виду, удобному для объяснения.

Методы анализа социальной информации можно условно разделить на два больших класса в соответствии с той формой, в которой эта информации представлена:

- качественные методы ориентированы на анализ инфор-мации, представленной главным образом в словесной форме.

- количественные методы носят математический характер и представля-ют собой приемы обработки цифровой информации.

Качественный анализ является предварительным условием для применения количественных методов, он направлен на выявление внутренней структуры данных, то есть на уточнение тех категорий, которые используются для описания изучаемой сферы реальности. На этой стадии происходит окончательное определение параметров (переменных), необходимых для исчерпывающего описания. Когда имеются четкие описательные категории, легко перейти к простейшей измерительной процеду-ре — подсчету. Например, если выделить группулюдей, нуждающихся в определенной помощи, то можно подсчитать количество таких людей в дан-ном микрорайоне.

При качественном анализе возникает необходимость произвести сжатие инфор-мации, то есть получить данные в более компактном виде.

Основным приемом сжатия информации выступает кодирование - процесс анализа качественной информации, который включа-ет выделение смысловых сегментов текста или реаль-ного поведения, их категоризацию (называние) и реорганизацию .

Для этого в самом тексте находят и отмечают ключевые слова, то есть те слова и выражения, которые несут главную смысловую нагрузку, прямо указывают на со-держание текста в целом или его отдельного фрагмен-та. Используются разные типы выделения: подчерки-вание одной или двумя линиями, цветовая маркировка, наносят пометки на полях, которые могут носить характер как дополни-тельных значков, так и комментариев. Например, можно выделять те фрагменты, где клиент говорит о себе. С другой стороны, можно выделять все, что касается его здоровья, можно разделить те проблемы, которые клиент в состоянии решить сам, и те проблемы, для решения которых он нуждается в посторонней помощи.

Сходные по содержанию фрагмен-ты метятся аналогичным образом. Это позволяет легко их идентифицировать и при необходимости собиратьвместе. Затем выделенные фрагменты отыскивают по разным рубрикам. Анализируя текст, можно сравнить отдельные его фрагменты между собой, выявляя сходства и различия.


Обработанный таким образом материал становится легко обозри-мым. Главные моменты выступают на первый план, как бы возвышаясь над массой деталей. Появляется возможность анализировать отношения между ними, выявлять их общую структуру и на этой основе вы-двигать некоторые объяснительные гипотезы.

Когда изучается одновременно несколько объектов (как минимум два) и когда сопоставление с целью обнаружения сходств и различий становится основ-ным приемом анализа применяется сравнительный метод . Количество изучае-мых объектов здесь невелико (чаще всего два или три), и каждый из них изучается достаточно углубленно и всесторонне.

Необходимо найти такую форму представления данных, которая наиболее удобна для анализа. Основ-ным приемом здесь выступает схематизация. Схема всегда упрощает реальные отношения, огрубляет истинную картину. В этом смысле схематизация отноше-ний является одновременно и сжатием информации. Но она предполагает также нахождение наглядной и легко обозримой формы представления информа-ции. Этой цели служит сведение данных в таблицы или диаграммы.

Для удобства сравнения материал сводят в таблицы. Общая структура таблицы такова: каждая клетка представляет собой пересечение строки и столбца. Таблица удобна тем, что в нее можно включать как ко-личественные, так и качественные данные. Смысл таблицы в том, чтобы ее мож-но было окинуть взглядом. Поэтому обычно таблица должна умещаться на одном листе. Сводная таблица, используемая для анализа, часто чертится на большом листе бумаги. Но большую таблицу всегда можно раз-бить на несколько частей, то есть сделать из нее не-сколько таблиц. Чаще всего строка соответствует одному случаю, а столбцы представляют его различные аспекты (при-знаки).

Еще одним приемом сжатого и наглядного пред-ставления информации служат диаграммы. Существу-ют разные типы диаграмм, но практически все они яв-ляются структурными схемами, на которых условными фигурами (прямоугольниками или овалами) изобража-ются элементы, а линиями или стрелками — связи между ними. Например, с помощью диаграммы удобно представить структуру любой организации. Элемента-ми ее выступают люди, точнее — должности. Если ор-ганизация большая, то в качестве элементов выбира-ются более крупные структурные элементы — подраз-деления. С помощью диаграммы легко представить иерархию отношений (систему подчинения): старшие должности располагаются на схеме выше, а младшие — ниже. Линии, соединяющие элементы, точно указыва-ют, кто кому непосредственно подчиняется.

Представление в виде диаграмм вполне можно ис-пользовать и для выявления логической структуры со-бытий или текста. В этом случае вначале проводится смысловой анализ и намечаются узловые события или компоненты, а затем они представляются в графичес-кой форме так, чтобы максимально ясной становилась связь между ними. Понятно, что схематизация приво-дит к огрублению картины за счет опускания многих деталей. Однако происходит сжатие информации, преобразование ее в вид, удобный для восприятия и запоминания.

Таким образом, основными приемами ка-чественного анализа являются кодирование и нагляд-ное представление информации.

Количественный анализ включает методы статистического описания выборки и методы статистического вывода (проверки статистических гипотез).

Количественные (статистические) методы анализа широко применяются в научных исследованиях вооб-ще и в социальных науках в частности. Социологи прибегают к статисти-ческим методам для обработки результатов массовых опросов общественного мнения. Психологи применя-ют аппарат математической статистики для создания надежных диагностических инструментов — тестов.

Все методы количественного анализа принято разделять на две большие группы. Методы статистичес-кого описания направлены на получение количествен-ной характеристики данных, полученных в конкрет-ном исследовании. Методы статистического вывода позволяют корректно распространять резуль-таты, полученные в конкретном исследовании, на всё явление как таковое, делать заключения общего ха-рактера. Статистические методы позволяют выявлять устойчивые тенденции и строить на этой основе теории, предназначенные для их объяснения.

Наука всегда имеет дело с разнообразием действи-тельности, но свою задачу она видит в обнаружении порядка вещей, некоторой устойчивости внутри на-блюдаемого разнообразия. Статистика снабжает удобны-ми приемами такого анализа.

Для использования статистики требуются два ос-новных условия:

а) необходимо иметь данные о группе (выборке) людей;

б) эти данные должны быть представлены в формализованном (кодифицированном) виде.

Нужно учитывать возможную ошибку выборки, так как для исследования берутся только отдельные респонденты, нет никакой га-рантии, что они являются типичными представителя-ми социальной группы в целом. Ошибка выборки зависит от двух моментов: от размера выборки и от степени вари-ации признака, который интересует исследователя. Чем больше выборка, тем меньше вероятность того, что в нее попа-дут индивиды с крайними значениями исследуемой переменной. С другой стороны, чем меньше степень вариации признака, тем в целом ближе будет каждое значение к истинному среднему. Зная размер выборки, и получив меру рассеяния наблюдений, нетрудно вывести показатель, который называется стандартная ошибка среднего. Он дает интервал, в котором должна лежать истинная средняя популяции.

Статистический вывод представляет собой процесс проверки гипотез. Причем первоначально всегда выдвигается предположение, что наблюдаемые различия носят случайный характер, то есть выборка принадле-жит к той же генеральной совокупности. В статистике такое предположение получило название нулевая ги-потеза.

Методика подготовки выпускной (квалификационной) работы, требования к ее содержанию и оформлению

Выпускная (квалификационная) работа завершает подготовку специалиста по социальной работе в вузе и показывает его готовность решать теоретические и практические задачи.

Выпускная (квалификационная) работа должна представлять собой самостоятельную законченную разработку, в которой анализируются актуальные проблемы социальной работы, раскрываются содержание и технологии разрешения этих проблем не только в теоретическом, но и в практическом плане на местном, региональном уровнях. Любая выпускная (квалификационная) работа по социальной работе должна быть своего рода социальным проектом.

Выпускная (квалификационная) работа должна свидетельствовать о наличии у автора глубоких и всесторонних знаний объекта и предмета исследования, способности к самостоятельным научным исследованиям с использованием полученных в ходе освоения основной образовательной программы знаний и навыков;

Выпускная (квалификационная) работа должна содержать обоснование выбора темы исследования, обзор опубликованной специальной литературы по данной проблеме, изложение полученных результатов исследования, конкретные выводы и предложения.

Выпускная (квалификационная) работа должна продемонстрировать уровень овладения автором методами научного исследования и научным языком, его умение кратко, логично и аргументированно излагать материал.

Выпускная (квалификационная) работа не должна механически повторять учебные работы выпускника (курсовые, реферативные работы и пр.).

Выводы, предложения и рекомендации по исследуемым проблемам, выдвигаемые автором в адрес органов, организаций, учреждений и служб социальной защиты населения, должны быть конкретны, иметь практическую и теоретическую ценность, обладать элементами новизны.

Цели дипломной работы:

Систематизация, закрепление и расширение теоретических и практических знаний по социальной работе, их применение при решении конкретных практических задач;

Развитие навыков самостоятельной работы;

Овладение методикой исследования, обобщения и логического изложения материала.

В дипломной работе студент должен показать:

Прочные теоретические знания по избранной теме, проблемное изложение теоретического материала;

Умение изучать и обобщать общую и специальную литературу по теме, решать практические задачи, делать выводы и предложения;

Навыки проведения анализа и расчетов, экспериментирования, владения вычислительной техникой;

Умение грамотно применять методы оценки социальной эффективности, предлагаемых мероприятий.

Дипломная работа имеет четкую композицию: введение, основная часть, состоящая из нескольких глав, и заключение.

Во введении указывается тема и цель дипломной работы, обосновывается актуальность исследования, его теоретическое и практическое значение, называются основные методы исследования. В нем дается обоснование обращения к данной теме, ее актуальность в настоящий момент, значение, цель и содержание поставленных задач, формулируются объект и предмет исследования, сообщается, в чем заключается теоретическая значимость и практическая ценность полученных результатов.

Темы выпускных (квалификационных) работ утверждаются выпускающими кафедрами. Тема должна соответствовать специальности, при ее формулировке целесообразно учитывать сложившиеся на кафедре научные направления и возможность обеспечения студентов квалифицированным научным руководством. Желательно, чтобы темы были актуальными и обладали новизной, теоретической и практической значимостью. При формулировке темы нужно учитывать наличие или отсутствие литературы и практических материалов, наработки самого студента по теме (курсовые работы, научные доклады и т. п.), интерес студента к избранной теме, возможности студента провести необходимые исследования.

Следовательно, введение является достаточно ответственной частью дипломной работы, т. к. предопределяет дальнейшее раскрытие темы и содержит необходимые квалификационные характеристики.

Актуальность темы, важность, значимость в настоящее время, современность, злободневность - обязательное условие любой научной работы. Обоснование актуальности - начальный этап любого исследования, характеризующий профессиональную подготовку студента в том, как он умеет выбрать тему, сформулировать, насколько правильно он ее понимает и оценивает с точки зрения современности, ее научной или практической значимости. Освещение актуальности не должно быть многословным. Достаточно показать суть проблемы, определить, где проходит граница между знанием и незнанием о предмете исследования.

От формулировки научной проблемы и доказательств, что ее часть, являющаяся объектом исследования данной работы, еще не получила достаточной разработки и освещения в научной литературе, логично перейти к формулировке цели предпринимаемого исследования, а также указать на конкретные задачи, которые предстоит решать в соответствии с этой целью. Цель исследования - то, к чему стремится дипломник в своей дипломной работе, что собирается осуществить, установить, для чего он взялся за разработку данной темы. В соответствии с заданной целью, студенту предстоит сформулировать конкретные задачи исследования как определенные этапы исследования, которые необходимо пройти для достижения поставленной цели.

Кроме вышеуказанного, обязательным элементом введения является формулировка объекта и предмета исследования, где объект - это процесс или явление, порождающее проблемную ситуацию и избранное для исследования, а предмет - то, что находится в границах объекта. Объект и предмет исследования соотносятся между собой как общее и частное. Именно на предмет исследования и должно быть направлено основное внимание дипломника, т. к. именно предмет исследования определяет тему работы, обозначенную на титульном листе.

Обязательным элементом введения научной работы является также указание на методы исследования , которые служат инструментом в добывании фактического материала, являясь необходимым условием достижения поставленной в такой работе цели.

Во введении описываются и другие элементы научного процесса. К ним, в частности, относят указание, на каком конкретном материале выполнена сама работа. Здесь же дается характеристика основных источников получения информации (официальных, научных, литературных, библиографических), а также указываются методологические основы проведенного исследования.

Основная часть состоит из нескольких глав, которые, в свою очередь, делятся на параграфы. В этой композиционной части излагаются основные теоретические положения дипломной работы, анализируется фактический материал, приводятся статистические данные. Возможный иллюстративный материал может быть представлен здесь же, либо внесен в приложение.

В основной части работы студент раскрывает методологию и методику исследования, используя с этой целью следующие методы: наблюдение, сравнение, анализ и синтез, индукцию и дедукцию, теоретическое моделирование, восхождение от абстрактного к конкретному, и наоборот.

Содержание глав основной части должно точно соответствовать теме работы и полностью ее раскрывать. Выводы, сделанные дипломником в исследовании, должны быть непротиворечивыми, аргументированными, научно обоснованными. При этом под аргументированностью понимается логический процесс, суть которого заключается в том, что в нем обосновывается истинность высказанного суждения с помощью других суждений, примеров, доводов.

Заключение содержит выводы по дипломной работе. Выводы должны отражать основное содержание работы, быть точными и краткими. Они не должны подменяться механическим суммированием выводов в конце глав, представляющих краткое резюме, а содержать то новое, что составляет итоговые результаты исследования. Именно здесь содержится то знание, которое является новым по отношению к исходному знанию. Именно оно выносится на обсуждение и оценку государственной комиссии и общественности в процессе защиты дипломной работы.

В случае, если работа имела практическое значение, в выводах должны содержаться указания, где и каким образом они могут применяться в практике социальной работы. В некоторых случаях возникает необходимость указать пути продолжения исследования темы, те задачи, которые придется решать будущим исследователям в первую очередь. Завершают работу список использованных нормативных материалов и список использованной литературы.

Вспомогательные или дополнительные материалы, которые загромождают текст основной части работы, помещают в приложении. По содержанию приложения могут быть достаточно разнообразными. Это, например, могут быть копии подлинных документов (Уставы, Положения, Инструкции, отчеты, планы и т. д.), отдельные выдержки из инструкций и правил, неопубликованные тексты и т д. По форме они могут представлять собой текст, таблицы, графики, карты.

В приложения нельзя включать библиографический список использованной литературы, вспомогательные указатели всех видов, справочные комментарии и примечания, которые являются не приложениями к основному тексту, а элементами справочно-сопроводительного аппарата работы, помогающими пользоваться ее основным текстом.

Выпускная квалификационная работа сдается на кафедру в печатном виде. Примерный объем работы должен составлять 2-2,5 п.л. (50-60 страниц машинописного текста). Границы полей: слева - 3,5 см; справа - 1,5 см, сверху и снизу - 2,5 см. Компьютерный набор осуществляется в текстовом варианте Microsoft Word (интервал 1-1,5 по множителю, 12-14-й кегль Times New Roman).

Все страницы работы, включая страницы с таблицами и схемами, нумеруются последовательно арабскими цифрами, расположенными, как правило, над серединой текста.

Титульный лист дипломной работы включает полное название организации, в которой выполнена работа, название кафедры, заглавие сочинения, шифр и наименование специальности, фамилию и инициалы исполнителя, фамилию, инициалы, научную степень (должность, звание) научного руководителя, город и год написания.

Название глав и параграфов обозначается в той же последовательности и в той же формулировке, в какой они приводятся в тексте работы.

Текст основной части работы делится на главы, разделы, подразделы, пункты, параграфы.

Оформленная в соответствии с требованиями дипломная работа должна быть сдана на выпускающую кафедру не позднее 14 дней до срока защиты. Сроки предзащиты и сроки защиты дипломной работы устанавливаются выпускающей кафедрой.

Анализ вещества может проводиться с целью установление качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое - нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.п. Химическое превращение, происходит при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения частей данного соединения или смеси веществ. В отличии от качественного анализа количественный анализ дает возможность определить содержание отдельный компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементами анализа; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физико - химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы качественного анализа

В качественном анализе для установления состава исследуемого вещества используют характерные химические или физические свойства этого вещества. Совершенно нет необходимости выделять открываемые элементы в чистом виде, что бы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа весьма труден. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях.

Аналитическим признаком присутствия в анализируемом соединении искомого элемента является выделение газа, отличающегося специфическим запахом; в другом - выпадении осадка, характеризующегося определенным цветом.

Реакции, протекающее между твердыми веществами и газами. Аналитические реакции могут протекать не только в растворах, но имежду твердыми, а также и газообразными веществами.

Примером реакции между твердыми веществами является реакция выделение металлической ртути при нагревании сухих солей ее с карбонатом натрия. Образование белого дыма при взаимодействии газообразного аммиака с хлористым водородом может служить примером аналитической реакции с участием газообразных веществ.

Реакции, применяемые в качественном анализе можно подразделить на следующие группы.

1. Реакции осаждения, сопровождающиеся образованием осадков различных цвета. Например:

CaC2O4 - белого цвета

Fe43 - синий,

CuS - коричнево - желтый

HgI2 - красный

MnS - телесно - розовый

PbI2 - золотистый

Образующиеся осадки могут отличаться определенной кристаллической структурой, растворимостью в кислотах, щелочах, аммиака и т.п.

2. Реакции, сопровождающиеся образованием газов, обладающих известным запахом, растворимостью и т.д.

3. Реакции, сопровождающиеся образованием слабых электролитов. К числу таких реакций, в результате который образуются:CH3COOH, H2F2, NH4OH, HgCl2, Hg(CN)2, Fe(SCN)3 и т.п. Реакциями этого же типа можно считать реакции кислотно - основного взаимодействия, сопровождающиеся образованием нейтральных молекул воды, реакции образования газов и малорастворимых в воде осадков и реакции комплексообразования.

4. Реакции кислотно- основного взаимодействия, сопровождающиеся переходом протонов.

5. Реакции комплексообразования, сопровождающиеся присоединения к атомам комплексообразователя различных легандов - ионов и молекул.

6. Реакции комплексообразования, связанные с кислотно - основным взаимодействием

7. Реакции окисления - восстановления, сопровождающиеся переходом электронов.

8. Реакции окисления - восстановления, связанные с кислотно - основным взаимодействием.

9. Реакции окисления - восстановления, вязанные с комплексообразованием.

10. Реакции окисления - восстановления, сопровождающиеся образованием осадков.

11. Реакции ионного обмена, протекающие на катионитах или анионитах.

12. Каталитические реакции, используемые в кинетических методах анализа

Анализ мокрым и сухим путем

Реакции, применяемые в качественном химическом анализе, чаще всего проводят в растворах. Анализируемое вещество сначала растворяют, а затем действуют на полученный раствор соответствующими реактивами.

Для растворения анализируемого вещества применяют дистиллированную воду, уксусную и минеральные кислоты, царскую водку, водный раствор аммиака, органические растворители и т.п. Чистота применимых растворителей является важным условием для получения правильных результатов.

Переведенное в раствор вещество подвергают систематическому химическому анализу. Систематический анализ состоит из ряд предварительных испытаний и последовательно выполняемых реакций.

Химический анализ исследуемых веществ в растворах называют анализо мокрым путем.

В некоторых случаях вещества анализируют сухим путем, без перевода их в раствор. Чаще всего такой анализ сводиться к испытанию способности вещества окрашивать бесцветное пламя горелки в характерный цвет или придавать определенную окраску плаву (так называемую перлу), полученному при нагревании вещества с тетраборатом натрия (бурой) или фосфатом натрия ("фосфорной солью") в ушке из платиновой проволоки.

Химический и физический метод качественного анализа.

Химические методы анализа. Методы определения состава веществ, основанные на использовании их химических свойств, называют химическими методами анализа.

Химические методы анализа широко применяют в практике. Однако они имеют ряд недостатков. Так, для определения состава данного вещества иногда необходимо предварительно отделить определяемую составную часть от посторонних примесей и выделить ее в чистом виде. Выделение веществ в чистом виде часто составляет очень трудную, а иногда и невыполнимую задачу. Кроме того, для определения малых количеств примесей (менее 10"4%), содержащихся в анализируемом веществе, приходится иногда брать большие пробы.

Физические методы анализа. Присутствие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества, например окрашивании бесцветного пламени горелки в характерные цвета летучими соединениями некоторых химических элементов.

Методы анализа, при помощи которых можно определить состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ.

К числу наиболее широко применяемых физических методов анализа относятся следующие.

Спектральный качественный анализ. Спектральный анализ основан на наблюдении эмиссионных спектров (спектров испускания, или излучения) элементов, входящих в состав анализируемого вещества.

Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др.

Для возбуждения свечения исследуемое вещество или его раствор облучают ультрафиолетовыми лучами. При этом атомы вещества, поглотив определенное количество энергии, переходят в возбужденное состояние. Это состояние характеризуется большим запасом энергии, чем нормальное состояние вещества. При переходе вещества от возбужденного к нормальному состоянию возникает люминесценция за счет избыточной энергии.

Люминесценцию, очень быстро затухающую после прекращения облучения, называют флуоресценцией.

Наблюдая характер люминесцентного свечения и измеряя интенсивность, или яркость люминесценции соединения или его растворов, можно судить о составе исследуемого вещества.

В ряде случаев определения ведут на основании изучения флуоресценции, возникающей в результате взаимодействия определяемого вещества с некоторыми реактивами. Известны также люминесцентные индикаторы, применяемые для определения реакции среды по изменению флуоресценции раствора. Люминесцентные индикаторы применяют при исследовании окрашенных сред.

Рентгеноструктурный анализ. С помощью рентгеновских лучей можно установить размеры атомов (или ионов) и их взаимное расположение в молекулах исследуемого образца, т. е. оказывается возможным определить структуру кристаллической решетки, состав вещества и иногда наличие в нем примесей. Метод не требует химической обработки вещества и больших его количеств.

Масс-спектрометрический анализ. Метод основан на определении отдельных ионизированных частиц, отклоняемых электромагнитным полем в большей или меньшей степени в зависимости от отношения их массы к заряду (подробнее см. книга 2).

Физические методы анализа, имея ряд преимуществ перед химическими, в некоторых случаях дают возможность решать вопросы, которые не удается разрешить методами химического анализа; пользуясь физическими методами, можно разделить элементы, трудно разделяемые химическими методами, а также вести непрерывную и автоматическую регистрацию показаний. Очень часто физические методы анализа применяют наряду с химическими, что позволяет использовать преимущества тех и других методов. Сочетание методов имеет особенно важное значение при определении в анализируемых объектах ничтожных количеств (следов) примесей.

Макро-, полумикро- и микрометоды

Анализ больших и малых количеств исследуемого вещества. В прежнее время химики пользовались для анализа большими количествами исследуемого вещества. Для того чтобы определить состав какого-либо вещества, брали пробы в несколько десятков граммов и растворяли их в большом объеме жидкости. Для этого требовалась и химическая посуда соответстэующей емкости.

В настоящее время химики обходятся в аналитической практике малыми количествами веществ. В зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, и главным образом от применяемой техники выполнения эксперимента, методы анализа делят на макро-, полумикро- и микрометоды.

При выполнении анализа макрометодом для проведения реакции берут несколько миллилитров раствора, содержащего не менее 0,1 г вещества, и к испытуемому раствору добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирках. При осаждении получают объемистые осадки, которые отделяют фильтрованием через воронки с бумажными фильтрами.

Капельный анализ

Техника проведения реакций в капельном анализе. Большое значение в аналитической химии приобрел так называемый капельный анализ, введенный в аналитическую практику Н. А. Тананаевым.

При работе этим методом большое значение имеют явления капиллярности и адсорбции, при помощи которых можно открывать и разделять различные ионы при их совместном присутствии. При капельном анализе отдельныеи реакции проводят на фарфоровых или стеклянных пластинках или на фильтровальной бумаге. При этом на пластинку или бумагу наносят каплю испытуемого раствора и каплю реактива, вызывающего характерное окрашивание или образование кристаллов.

При выполнении реакции на фильтровальной бумаге используют капиллярно-адсорбционные свойства бумаги. Жидкость всасывается бумагой, а образующееся окрашенное соединение адсорбцируется на небольшом участке бумаги, вследствие чего повышается чувствительность реакции.

Микрокристаллоскопический анализ

Микрокристаллоскопический метод анализа основан на обнаружении катионов и анионов при помощи реакции, в результате которых образуется соединение, обладающие характерной формой кристаллов.

Раньше этот метод применялся в качественном микрохимическом анализе. В настоящее время он используется также и в капельном анализе.

Для рассмотрения образующихся кристаллов в микрокристаллоскопическом анализе пользуются микроскопом.

Кристаллы характерной формы пользуются при работе с чистыми веществами путем внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещенную на предметном стекле. Через некоторое время появляются ясно различимые кристаллы определенной формы и цвета.

Метод растирания порошка

Для обнаружения некоторых элементов иногда применяют метод растирания в фарфоровой пластинке порошкообразного анализируемого вещества с твердым реагентом. Открываемый элемент обнаруживается по образованию характерных соединений, отличающихся по цвету или запаху.

Методы анализа, основанные на нагревании и сплавлении вещества

Пирохимический анализ. Для анализа веществ применяют также методы, основанные на нагревании испытуемого твердого вещества или его сплавлении с соответствующими реагентами. Одни вещества при нагревании плавятся при определенной температуре, другие возгоняются, причем на холодных стенках прибора появляются характерные для каждого вещества осадки; некоторые соединения при нагревании разлагаются с выделением газообразных продуктов и т. д.

При нагревании анализируемого вещества в смеси с соответствующими реагентами происходят реакции, сопровождающиеся изменением цвета, выделением газообразных продуктов, образованием металлов.

Спектральный качественный анализ

Помимо описанного выше способа наблюдения невооруженным глазом за окрашиванием бесцветного пламени при внесении в него платиновой проволоки с анализируемым веществом в настоящее время широко используются другие способы исследования света, излучаемого раскаленными парами или газами. Эти способы основаны на применении специальных оптических приборов, описание которых дается в курсе физики. В такого рода спектральных приборах происходит разложение в спектр света с различными длинами волн, испускаемого образцом накаленного в пламени вещества.

В зависимости от способа наблюдения спектра спектральные приборы называют спектроскопами, с помощью которых ведут визуальное наблюдение спектра, или спектрографами, в которых спектры фотографируются.

Хроматографический метод анализ

Метод основан на избирательном поглощении (адсорбции) отдельных компонентов анализируемой смеси различными адсорбентами. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества.

Сущность хроматографического метода анализа кратко заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку (адсорбционную колонку), заполненную адсорбентом.

Кинетические методы анализа

Методы анализа, основанные на измерении скорости реакции и использовании ее величины для определения концентрации, объединяются под общим названием кинетических методов анализа (К. Б. Яцимирский).

Качественное обнаружение катионов и анионов кинетическими методами выполняется довольно быстро и сравнительно просто, без применения сложных приборов.