Организация пространства. Советы и идеи. Сад и участок

Свойства сложных систем. Примеры систем

Роботы, предназначенные для исследований поверхности других планет и космических тел, такие, как небезызвестный марсоход Curiosity, отлично справляются со своей работой, передвигаясь по относительно ровной поверхности. Однако, у таких роботов нет никакой возможности

Специалисты компании Honeywell Quantum Solutions продемонстрировали недавно высокоэффективные квантовые вычислительные операции, используя кубиты на базе пойманных в ловушку ионов. Этот этап является главным шагом на пути к созданию самого мощного квантового компьютера в мире на

Исследователи из Национального университета Йокогамы, Япония, впервые телепортировали квантовую информацию между двумя объектами, заключенными внутри одного кристалла алмаза. Данная технология может стать ключевой технологией в квантовых вычислениях и коммуникациях

Монтаж — важный этап в установке оборудования. Только квалифицированный монтаж может гарантировать корректную работу систем видеонаблюдения и увеличить срок службы Вашего оборудования. Виды работ по проектированию систем охранной сигнализации с учетом всех факторов: 1. Площадь помещений; 2. Уровень влияния внешней среды: температурный режим, влажность, погодные условия, уровень освещенности, расстояние до объекта съемки/наблюдения; 3. Дополнительные потребности в контроле доступа, охранных системах, пожарном контроле. Компания «КИПЕР ЕКБ» предлагает такие услуги своим клиентам: Подбор

Ученые из Национального института стандартов и технологий создали то, что можно назвать «атомарным» радиотрансивером, приемником и передатчиком одновременно, и при помощи этого устройства в пределах лаборатории была осуществлена передача одного из известных

Известно, что явление квантовой запутанности является тем, на чем основана работа квантовых компьютеров. Однако, до последнего времени в распоряжении людей не было надежного метода, позволяющего контролировать квантовую запутанность даже в простейших системах,

Ученым-астрономам впервые в истории получилось снять изображение огромного кольцеобразного облака состоящего преимущественно из холодного водорода, которое циркулирует вокруг сверхмассивной черной дыры, расположенной в центре нашей галактики. Это кольцо является

Резиновая крошка — это современный экологически чистый материал, который производится на основе красящего пигмента и полиуретанового связующего. Подобные покрытия из резиновой крошки преимущественно используются в спортивных залах и на детских игровых площадках. В последние годы популярность использования данного материала резко возросла. Дело в том, что резиновая крошка обладает массой достоинств по сравнению с другими покрытиями: низкие риски получения травм при падении благодаря эластичным и амортизирующим свойствам резины; устойчивость ко

В настоящее время создание крошечных роботов, по размерам и конструкции напоминающих насекомых, пока кажется достаточно дорогостоящим развлечением. Но потенциал таких кибернетических «насекомых» огромен, их можно будет использовать в миссиях по спасению и оказанию

Известная робототехническая компания Boston Dynamics уже давно является «законодателем моды» в некоторых необычных вещах. Ее специалисты, демонстрируя способности к удержанию равновесия своих роботов, первыми начали пинать ногами свои творения. И, буквально через очень

Дополнительный Sidebar

Информационные технологии

В соцсети обнаружили страницы, нацеленные на Украину.Администрация Facebook удалила 97 управляемых Россией страниц, групп и аккаунтов которые были сфокусированы на Украину и распространяли недостоверную информацию, передает Хроника.инфо со ссылкой на Корреспондент.

Все подряд


Наш первый пример - это система, в которой нет поступлений и есть два поглощающих (или конечных) состояния. Он был выбран с целью проиллюстрировать, что хорошая стохастическая модель имеет ряд достоинств по сравнению с приемами, которые иногда использовались для решения подобных задач. Это довольно упрощенный пример описания полной неопределенности, которая возникает после лечения заболевания раком. Пациент после лечения может по прошествии некоторого времени находиться в одном из множества состояний. Эти состояния могут классифицироваться, например, так: «здоров», «заболел вновь» (рецидив болезни), «мертв»; точность классификации, очевидно, зависит от целей исследования и от имеющихся возможностей по получению данных. Стохастическая модель описания жизни пациентов после лечения от заболевания раком была построена Фикс и Нейманом (1951) и обсуждалась в более общем виде Залем (1955). Фикс и Нейман применили эту модель для оценки эффективности лечения. Далее мы опишем, как они это делали. Отметим, кстати, что указанная модель достаточно общего вида, и у нее могут быть также другие приложения.

В модели Фикс и Неймана введены четыре состояния. Описание состояний и возможные переходы показаны на рис. 5.1. Авторы понимали

трудность определения состояния «выздоровел» и отметили, что было бы желательно некоторые из состояний разделить. Например, пациенты, находящиеся в состоянии могут быть разделены на две группы: те, кто умер по естественным (ненасильственным) причинам, и те, судьбу которых проследить не удалось.

Можно также предположить, что необходимо предусмотреть возможность перехода из состояния в состояние Мы не будем отклоняться в сторону, обсуждая эти детали, так как этот пример приведен прежде всего для того, чтобы проиллюстрировать применение теории марковских процессов к описанию жизни людей.

Первая задача в данном приложении - оценить интенсивности переходов. Для этого использовались данные о выживших, при этом сами данные были лишены недостатков, присущих в общем случае такого рода измерениям. Один из способов измерения - определение доли выживших в году. Это относительное число оставшихся в живых, по крайней мере, в течение Т лет от всех прошедших курс лечения. Такие измерения были бы удовлетворительными, если бы рак был единственной причиной смерти и если бы все больные наблюдались в течение полных Т лет. Практически так никогда не бывает, и доля выживших в году может привести к ошибочным выводам. Чтобы убедиться в неточности такого утверждения, заметим только, что измеренная интенсивность (доля) будет больше, так как следует измерить также долю тех, кто выбыл из поля зрения или умер по другим причинам, т. е. относительно большее число людей осталось бы в живых до предельного срока, если бы им суждено было умереть только от заболевания раком. Таким образом, наблюдаемые значения интенсивностей перехода зависят не только от опасности умереть от рака, но и от других причин, не имеющих отношения к заболеванию раком. Если сопоставлять по грубым интенсивностям переходов группу тех, кто прошел курс лечения, и контрольную группу, то сравнение не имело бы смысла, если бы эти две группы подвергались различным опасностям по различным причинам. Чтобы преодолеть эти естественные трудности, обычно вычисляют чистые интенсивности, которые учитывают

такие различия. Цель приведенного примера - показать, что стохастическая модель дает лучшую основу для оценки чистых интенсивностей, чем метод, используемый в страховом деле.

Интенсивности переходов между состояниями в модели Фикс и Неймана полагали постоянными величинами. Однако хорошо известно, что естественная смертность людей - непостоянная величина, и после периода младенчества она увеличивается с возрастом. В средний период жизни она не очень быстро увеличивается, и если период времени Т достаточно короткий, то предположение о постоянстве будет вполне адекватно действительности. Во всяком случае, мы покажем, что можно собирать данные таким образом, чтобы можно было проверять эти предположения. Интенсивность смерти после лечения рака разных видов широко изучается. Время жизни после лечения, как было выяснено, имеет асимметричный характер, Боаг (1949), например, сделал предположение, что оно часто может быть адекватно описано с помощью асимметричного логнормального распределения. В этом случае логнормальное распределение нелегко отличить от экспоненциального, которое появляется при постоянной интенсивности смерти. Таким образом, предположение, что интенсивность смерти от рака является постоянной величиной, вероятно, достаточно реалистично. Непосредственно проанализировать факторы, влияющие на интенсивность переходов из состояния в (выздоровление) и из состояния не представляется возможным, но кажется правдоподобным предположение о постоянстве интенсивностей потерь по разным причинам, по крайней мере для интенсивностей выпадения пациентов из поля зрения.

В нашей модели мы предполагаем, что в нулевой момент времени в состоянии находится N людей, в других состояниях людей нет. Численности людей в четырех группах в последующие моменты времени Т будут случайными величинами, которые мы обозначим через - математическое ожидание случайной величины . Наблюдая эти случайные величины в один или несколько моментов времени, можно оценить интенсивности переходов. Затем, используя оценки, можно предсказать численности различных состояний в будущем. Наиболее важна возможность оценить эти численности, если смерть от заболевания раком будет единственной причиной.

Применение теории

Расширенная матрица в описываемом случае имеет вид

где Уравнение для нахождения собственных чисел матрицы есть или

Очевидно, что это уравнение имеет два нулевых корня; два оставшихся корня, которые мы обозначим следующие:

причем для расчета возьмем положительный знак, а для - отрицательный. Тогда, используя (4.24), получим

Следующий шаг - записать и решить однородные уравнения для коэффициентов. Для начала положим будет принимать значения 2, 3 и 4. Таким образом,

Приведем три группы уравнений для и 4:

Из уравнений немедленно следует, что и, следовательно, первые уравнения в каждой группе можно опустить. Начальные условия состоят в том, что в нулевой момент времени все индивидуумы системы находятся в состоянии Предположим далее, что Если то соответствующие значения могут быть найдены просто умножением на N результата, полученного при предположении, что . Тогда в добавление к записанным выше уравнениям имеем

Для решения этих уравнений проделаем следующие преобразования. Сложим правые и левые части уравнений (5.22) и, используя начальные условия, получим

Сделав аналогичные преобразования для (5.23), будем иметь

но это уравнение может быть получено через и си из уравнения (5.23), что дает

Затем можно совместно решить однородные уравнения (5.27) и (5.28), что позволяет записать:

и, следовательно,

Сделав подобные преобразования для (5.24) и (5.25), получаем

Остается определить две константы: Используя начальные условия, находим

(5.30)

Сейчас рассмотрим, как использовать эти результаты, чтобы сравнить интенсивности выживания. Когда величина может быть интерпретирована как вероятность находиться в состоянии - в момент времени Т. Таким образом, представляют собой соответственно грубые интенсивности смерти вследствие заболевания раком и по естественным причинам. Однако зависит также от интенсивности естественной смерти и, как мы указывали выше, это уменьшает ее величину как меру риска. На самом деле нам нужна чистая мера риска (чистая интенсивность смерти), из которой устранено влияние естественной смертности. Согласно подходу к задаче, используемому в страховом деле, чистая интенсивность смерти от рака определяется по формуле

Величина (5.32) должна давать среднее число смертей от заболевания раком на интервале (0, Т), если бы смертности по естественным причинам не было. Смысл уравнения (5.32) станет яснее, если его переписать:

Второе слагаемое в правой части уравнения (5.33) - оценка численности людей, которые умерли бы от рака в течение рассматриваемого периода, если не умерли бы по другим естественным причинам. Оно получено в предположении, что смерть от рака, вероятность которой равна одной второй, предшествует естественной смерти по другим причинам. Предлагаемая модель предоставляет другой метод для оценки чистых интенсивностей смерти от рака. Мы можем исключить влияние естественной смертности, положив Тогда чистая интенсивность записывается как

где нулевые индексы в означают, что положена равной нулю.

Применение этих результатов может быть проиллюстрировано численными примерами. Возьмем следующие значения интенсивностей переходов:

Подставляя эти величины в (5.20), для примера 1 находим:

а для примера 2:

Можно выявить одну особенность, показывающую несостоятельность метода определения интенсивности смерти, принятого в страховом деле, если рассмотреть предельное поведение (5.32) при Вместо того, чтобы стремиться к единице, как следовало бы ожидать от достаточно обоснованной меры, она стремится к значению, меньшему единицы в обоих примерах. Анализ (5.32) показывает, что этот результат всегда имеет место. Очевидно также, что в общем случае при достаточно большом Т. Некоторые численные значения содержатся в табл. 5.1.

Приведенный пример - хорошая иллюстрация использования стохастической модели для измерения социального явления. Он показывает также, что коррекция измерений с позиций «здравого смысла» может существенно обесценить проведенные измерения. Высказанные доводы предполагают, что модель адекватна описываемому явлению. Если в действительности интенсивности переходов не постоянны, то более простая статистическая оценка иногда предпочтительнее, потому

Таблица 5.1. Сравнение чистых интенсивностей смерти от рака, вычисленных с помощью метода, используемого в страховом деле, и с помощью стохастической модели

что она не зависит от распределения. Как будет показано, именно грубые методы эффективны при проверке адекватности модели.

При обсуждении модели предполагалось, что интенсивности переходов известны. На практике они не бывают известными, и их необходимо оценить по имеющимся данным. Общие методы оценивания упоминались в гл. 4, но для решения нашей задачи достаточно более простого метода Фикс и Неймана. В момент времени Т мы можем зафиксировать численности пациентов в начальный момент в каждом из четырех состояний. Эти численности могут рассматриваться как оценки для , которые в свою очередь получаются при неизвестных параметрах. В обсуждаемой модели метод позволяет получить четыре уравнения для оценки неизвестных параметров. К сожалению, эти уравнения не являются линейно независимыми, так как

где N - наблюдаемое число индивидуумов. Ситуация была бы еще хуже, если бы в матрице R были другие ненулевые интенсивности. Такие трудности можно преодолеть, исследуя состояния системы в нескольких точках оси времени. Другой метод - рассматривать некоторые другие характеристики системы, например, по предложению Фикс и Неймана, подсчитывать число пациентов, оставшихся в состоянии на интервале времени . Если материал наблюдений достаточно обширен, то можно не только оценить все параметры, но и проверить качество модели. Предельная структура может быть получена непосредственно, без проведения всех описанных вычислений, так как из (5.21) результат следует немедленно.

Из уравнений (5.30) и (5.31) получаем

Остальные предельные значения равны нулю. Таким образом, имеется простая зависимость от интенсивностей переходов. Вид этой зависимости может быть легко выявлен, если записать отношение этих величин в следующей форме:

где - отношение интенсивностей переходов из состояния «определен диагноз - заболевание раком», и - отношение интенсивностей переходов из состояния «здоров». Большая интенсивность потока выздоравливающих способствует увеличению доли тех пациентов, кто умирает по другим естественным причинам, но этому в некоторой степени будет противодействовать возможность и большей интенсивности потока рецидивов

Мы уже указывали, что модель первоначально была разработана для измерения эффективности лечения. Один из способов - рассчитать - чистую долю тех, кто умер бы от рака, при исключении влияния других причин. Фикс и Нейман приводят доводы в пользу того, что не единственная, но, видимо, наиболее подходящая мера для оценки выживания. Обсуждение этого вопроса выходит за рамки данной книги, но мы коснулись его потому, что величины будут полезны для построения других мер при дальнейших исследованиях. Например, Фикс и Нейман предполагают полезным рассчитывать среднюю длительность «нормальной» жизни в период так, как если бы рак был единственной причиной смерти. Поскольку - функция распределения длительности «нормальной» жизни при отсутствии других причин смерти, математическое ожидание может быть записано так:

Иерархическая кадровая система

Модели с непрерывным временем, описывающие иерархические системы, впервые были предложены Силом (1945) и Вайдой (1948). Хотя их модели немарковские, оба автора обсуждали некоторые особые случаи, которые совпадают с теми, что следуют из нашей общей теории. Рассмотрим систему, которая представлена диаграммой на рис. 5.2. Эта система имеет одно поглощающее состояние, обозначенное Продвижение возможно только на ближайшую градацию,

что изображена на схеме, а все вновь поступающие зачисляются на первую. Расширенная матрица интенсивностей переходов для описанной системы имеет вид

Простая треугольная структура позволяет нам получить точную формулу для собственных значений и коэффициентов которые есть в выражениях для определения переходных вероятностей

Отсюда мы тотчас же находим, что

Уравнения для определения коэффициентов с, полученные из (4.19), имеют вид

Начальные условия, представленные последними двумя уравнениями, следуют из того, что все вновь прибывшие начинают свою карьеру с градации 1 - низшей ступени служебной лестницы. Решение системы уравнений (5.40) дает

Представляют интерес только значения если в этом случае из (5.3) находим

Коэффициенты, полученные из (5.40), дают

и выражения для них можно подставить в (5.42). Подобные выражения могут быть найдены при соответствующих начальных условиях, но они же легко могут быть выведены из выражений для когда имеется простая иерархическая система Вновь поступивший, который начинает свою карьеру с ступени -уровневой системы, находится в том же состоянии, что и тот, который поступил на низшую (первую) ступень -уровневой системы. Заменяя на и переобозначая интенсивности переходов, найдем необходимые выражения. Ниже мы приведем пример. Очевидно, что верхний предел суммы в последнем члене выражения

Модель, которую мы описали, несколько более общего вида, чем марковская версия модели Вайды (1948). В последней предполагалось, что интенсивности поступлений и уходов постоянны, таким образом, результаты Вайды могут быть получены из наших, если положить скажем, для Мы имеем также ожидаемые численности ступеней для любого 7, а Вайда обсуждал только предельный случай.

Как мы указывали, по нескольким причинам требуется, чтобы все величины гц ) были различны. В случае, который мы сейчас обсудим, для поэтому равные Гц встречаются при равенстве интенсивностей уходов с различных ступеней. Случай, представляющий особый интерес, появляется тогда, когда для Это соответствует ситуации, в которой интенсивности продвижения и интенсивности уходов одни и те же для всех ступеней, кроме последней. Соответствующее изменение общей теории может быть получено при стремлении друг к другу собственных значений в выражении (5.43). Окончательное выражение для будет таким.

««Моделирование и формализация» 11 класс» - Определите хорошо или плохо поставлена задача. Город будущего. Информационная модель. Тестирование. Шахматы. Инструктаж по ОТ и ТБ. Эстафета терминов. Лист самооценки. Термины к слову. Номера материальных моделей. Формула химической реакции. Составьте модели. Материальные модели. Группы меняются местами.

««Моделирование» 9 класс» - Список депутатов государственной Думы. По дороге, как ветер, промчался лимузин. Вес; цвет; форма; структура; размер. Модель человека в виде детской куклы. Перечень стран мира – это информационная модель. Описание дерева. Существующие признаки объекта. Файловая система ПК. Тест завершён. Список учащихся школы; план классных комнат.

«Моделирование и формализация» - Взаимодействие. Объект. Принцип эмерджентности. Рисунок. Приведение (сведение, предсавление)информации, связанной с выделенными свойствами, к выбранной форме. Модель неограниченного роста. Структура. Поведение. М о д е л ь. Динамические. Внешний вид. Один из основных методов познания. Система- целое, состоящих из элиментов связанных между собой.

«Моделирование, формализация, визуализация» - Формализация. Проведение компьютерного эксперимента. Основные этапы. Метод познания. Математика. Цены устройств компьютера. Типы информационных моделей. Системный подход в моделировании. Модели разбиваются на два класса. Сетевая структура. Рисунки. Два пути построения компьютерной модели. Моделирование.

«Основные этапы моделирования» - Темы проектов. Этапы. Виды моделей. Контурные. Площадные (полигональные). Структурность. Информационные процессы в обществе. Периферийные устройства компьютера. Объект. Точечные. Интегративность. Связность. Функциональность. Информационные процессы в природе. Свойства системы. Линейные. Архитектура компьютера.

«Системный подход в моделировании» - Основоположники системного подхода: Система - совокупность взаимосвязанных элементов, образующих целостность или единство. Структура- способ взаимодействия элементов системы посредством определенных связей. Основные определения системного подхода: Питер Фердинанд Дракер. Функция - работа элемента в системе.

Всего в теме 18 презентаций

  • Интерактивная доска;
  • MS PowerPoint

Ход урока:

I.Организационный момент (2 мин.)

II. Актуализация знаний (3 мин.)

Проверка домашнего задания.

III. Теоретическая часть (30 мин.)

Системология — наука о системах. В чем состоит содержание этой науки и какое отношение она имеет к информатике, вам предстоит узнать из данной главы.

Понятие системы

Наш мир наполнен многообразием различных объектов. Нередко мы употребляем понятия «простой объект», «сложный объект». А размышляли ли вы о том, в чем разница между простым и сложным? На первый взгляд, возникает такой очевидный ответ: сложный объект состоит из множества простых. И чем больше в нем таких «деталей», тем предмет сложнее. Например, кирпич — простой объект, а здание, построенное из кирпичей, — сложный объект. Или еще: болт, колесо, руль и другие детали автомобиля — простые объекты, а сам автомобиль, собранный из этих деталей, — сложное устройство. Но только ли в количестве деталей заключается различие между простым и сложным?

Сформулируем определение главного понятия системологии — понятия системы:

Система — это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое. Всякая система имеет определенное назначение (функцию, цель).

Рассмотрим кучу кирпичей и дом, построенный из этих кирпичей. Как бы много ни было кирпичей в куче, ее нельзя назвать системой, потому что в ней нет единства, нет целесообразности. А жилой дом имеет вполне конкретное назначение — в нем можно жить. В кладке дома кирпичи определенным образом взаимосвязаны, в соответствии с конструкцией. Конечно, в конструкции дома кроме кирпичей имеется много других деталей (доски, балки, окна и пр.), все они нужным образом соединены и образуют единое целое — дом.

Вот другой пример: множество велосипедных деталей и собранный из них велосипед. Велосипед — это система. Его назначение — быть транспортным средством для человека.

— целесообразность. Это назначение системы, главная функция, которую она выполняет.

Структура системы

Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. Все части (элементы) системы находятся в определенных отношениях или связях друг с другом. Здесь мы выходим на следующее важнейшее понятие системологии — понятие структуры.

Структура — это порядок связей между элементами системы.

Можно еще сказать так: структура — это внутренняя организация системы. Из тех же самых кирпичей и других деталей кроме жилого дома можно построить гараж, забор, башню. Все эти сооружения строятся из одних и тех же элементов, но имеют разную конструкцию в соответствии с назначением сооружения. Применяя язык системологии, можно сказать, что они различаются структурой.

Кто из вас не увлекался детскими конструкторами: строительными, электрическими, радиотехническими и другими? Все детские конструкторы устроены по одному принципу: имеется множество типовых деталей, из которых можно собирать различные изделия. Эти изделия отличаются порядком соединения деталей, т. е. структурой.

Из всего сказанного можно сделать вывод: всякая система обладает определенным элементным составом и структурой. Свойства системы зависят и от состава, и от структуры. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

— целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы.

С зависимостью свойств различных систем от их структуры вам приходилось и еще предстоит встретиться в разных школьных дисциплинах. Например, известно, что графит и алмаз состоят из молекул одного и того же химического вещества — углерода. Но в алмазе молекулы углерода образуют кристаллическую структуру, а у графита структура совсем другая — слоистая. В результате алмаз — самое твердое в природе вещество, а графит мягкий, из него делают грифели для карандашей.

Рассмотрим пример общественной системы. Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др. Связи в таких системах — это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.

Вот простой пример. Имеются две строительные бригады, состоящие каждая из семи человек. В первой бригаде один бригадир, два его заместителя и по два рабочих в подчинении у каждого заместителя. Во второй бригаде — один бригадир и шестеро рабочих, которые подчиняются непосредственно бригадиру.

На рисунках схематически представлены структуры подчиненности в двух данных бригадах:

Таким образом, две эти бригады — пример двух производственных (социальных) систем с одинаковым составом (по 7 человек), но с разной структурой подчиненности.

Различие в структуре неизбежно отразится на эффективности работы бригад, на их производительности. При небольшом числе людей эффективнее оказывается вторая структура. Но если в бригаде 20 или 30 человек, то тогда одному бригадиру трудно управлять работой такого коллектива. В этом случае разумно ввести должности заместителей, т. е. использовать первую структуру подчиненности.

Системный эффект

Сущность системного эффекта : всякой системе свойственны новые качества, не присущие ее составным частям.

Это же свойство выражается фразой: целое больше суммы своих частей. Например, отдельные детали велосипеда: рама, руль, колеса, педали, сиденье не обладают способностью к езде. Но вот эти детали соединили определенным образом, создав систему под названием «велосипед», которая приобрела новое качество — способность к езде, т. е. возможность служить транспортным средством. То же самое можно показать на примере самолета: ни одна часть самолета в отдельности не обладает способностью летать; но собранный из них самолет (система) — летающее устройство. Еще пример: социальная система — строительная бригада. Один рабочий, владеющий одной специальностью (каменщик, сварщик, плотник, крановщик и пр.), не может построить многоэтажный дом, но вся бригада вместе справляется с этой работой.

О системах и подсистемах

В качестве еще одного примера системы рассмотрим объект — персональный компьютер (ПК). На рисунке приведена схема состава и структуры ПК.

Самое поверхностное описание ПК такое: это система, элементами которой являются системный блок, клавиатура, монитор, принтер, мышь. Можно ли назвать их простыми элементами? Конечно, нет. Каждая из этих частей — это тоже система, состоящая из множества взаимосвязанных элементов. Например, в состав системного блока входят: центральный процессор, оперативная память, накопители на жестких и гибких магнитных дисках, CD-ROM, контроллеры внешних устройств и пр. В свою очередь, каждое из этих устройств — сложная система. Например, центральный процессор состоит из арифметико-логического устройства, устройства управления, регистров. Так можно продолжать и дальше, все более углубляясь в подробности устройства компьютера.

Систему, входящую в состав какой-то другой, более крупной системы, называют подсистемой.

Из данного определения следует, что системный блок является подсистемой персонального компьютера, а процессор - подсистемой системного блока.

А можно ли сказать, что какая-то простейшая деталь компьютера, например гайка, системой не является? Все зависит от точки зрения. В устройстве компьютера гайка — простая деталь, поскольку на более мелкие части она не разбирается. Но с точки зрения строения вещества, из которого сделана гайка, это не так. Металл состоит из молекул, образующих кристаллическую структуру, молекулы — из атомов, атомы — из ядра и электронов. Чем глубже наука проникает в вещество, тем больше убеждается, что нет абсолютно простых объектов. Даже частицы атома, которые называют элементарными, например электроны, тоже оказались непростыми.

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях — как подсистема, имеющая свой состав и структуру.

Основной смысл исследовательской работы ученого чаще всего заключается в поиске системы в предмете его исследования.

Задача всякой науки — найти системные закономерности в тех объектах и процессах, которые она изучает.

В XVI веке Николай Коперник описал устройство Солнечной системы. Земля и другие планеты вращаются вокруг Солнца; связаны они в единое целое силами притяжения.
Систематизация знаний очень важна для биологии. В XVIII веке шведский ученый Карл Линней написал книгу под названием «Системы природы». Он сделал первую удачную попытку классифицировать все известные виды животных и растений, а самое главное, показал взаимосвязь, т. е. зависимость одних видов от других. Вся живая природа предстала
как единая большая система. Но она, в свою очередь, состоит из системы растений, системы животных, т. е. подсистем. А среди животных есть птицы, звери, насекомые и т. д. Всё это тоже системы.

Русский ученый Владимир Иванович Вернадский в 20-х годах XX века создал учение о биосфере. Под биосферой он понимал систему, включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра (все это названо активной оболочкой Земли). Все подсистемы биосферы связаны между собой и зависят друг от друга. Вернадскому же принадлежит идея о зависимости состояния биосферы от космических процессов, иначе говоря, биосфера является подсистемой более крупных, космических систем.

, к любой работе проявлять системный подход.

Сущность системного подхода : необходимо учитывать все существенные системные связи того объекта, с которым работаешь.

Очень «чувствительным» для всех нас примером необходимости системного подхода является работа врача. Взявшись лечить какую-то болезнь, какой-то орган, врач не должен забывать о взаимосвязи этого органа со всем организмом человека, чтобы не получилось, как в поговорке, «одно лечим, другое калечим». Человеческий организм — очень сложная система, поэтому от врача требуются большие знания и осторожность.

Еще один пример — экология. Слово «экология» происходит от греческих слов «экое» — «дом» и «логос» — «учение». Эта наука учит людей относиться к окружающей их природе как к собственному дому. Самой важной задачей экологии сегодня стала защита природы от разрушительных последствий человеческой деятельности (использования природных ресурсов, выбросов промышленных отходов и пр.). Со временем люди все больше вмешиваются в природные процессы. Некоторые вмешательства неопасны, но есть такие, которые могут привести к катастрофе. Экология пользуется понятием «экологическая система». Это человек с «плодами» его деятельности (города, транспорт, заводы и пр.) и естественная природа. В идеале в этой системе должно существовать динамическое равновесие, т. е. те разрушения, которые человек неизбежно производит в природе, должны успевать компенсироваться естественными природными процессами или самим человеком. Например, люди, машины, заводы сжигают кислород, а растения его выделяют. Для равновесия надо, чтобы выделялось
кислорода не меньше, чем его сжигается. И если равновесие будет нарушено, то в конце концов наступит катастрофа в масштабах Земли.

В XX веке экологическая катастрофа произошла с Аральским морем в Средней Азии. Люди бездумно забирали для орошения полей воду из питающих его рек Амударья и Сырдарья. Количество испаряющейся воды превысило приток, и море стало пересыхать. Сейчас оно практически погибло и жизнь на его бывших берегах ни для людей, ни для животных и растений стала невозможной. Вот вам пример отсутствия системного подхода. Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

IV

· стр. 32 №9, 10

V . Итог урока (2 мин.)

VI . Домашнее задание (3 мин.)

§5; стр. 32 №4-8.

Просмотр содержимого документа
«Урок № 9»

Тема: Что такое система?

Тип урока: урок ознакомления с новым материалом

Цели:

    Познакомить учащихся с понятиями: система, системология, структура, подсистема, системном подходе;

    Рассмотреть системный эффект, системы и подсистемы, системы в науке и системном подходе;

    Формирование общих представлений современной научной картины мира;

    формирование коммуникативных качеств развивающейся личности.

Оборудование:

    Интерактивная доска;

    MS PowerPoint

Ход урока:

I .Организационный момент (2 мин.)

Приветствие. Сообщение новой темы.

II . Актуализация знаний (3 мин.)

Проверка домашнего задания.

III . Теоретическая часть (30 мин.)

Системология - наука о системах. В чем состоит содержание этой науки и какое отношение она имеет к информатике, вам предстоит узнать из данной главы.

Понятие системы

Наш мир наполнен многообразием различных объектов. Нередко мы употребляем понятия «простой объект», «сложный объект». А размышляли ли вы о том, в чем разница между простым и сложным? На первый взгляд, возникает такой очевидный ответ: сложный объект состоит из множества простых. И чем больше в нем таких «деталей», тем предмет сложнее. Например, кирпич - простой объект, а здание, построенное из кирпичей, - сложный объект. Или еще: болт, колесо, руль и другие детали автомобиля - простые объекты, а сам автомобиль, собранный из этих деталей, - сложное устройство. Но только ли в количестве деталей заключается различие между простым и сложным?

Сформулируем определение главного понятия системологии - понятия системы:

Система - это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое. Всякая система имеет определенное назначение (функцию, цель).

Рассмотрим кучу кирпичей и дом, построенный из этих кирпичей. Как бы много ни было кирпичей в куче, ее нельзя назвать системой, потому что в ней нет единства, нет целесообразности. А жилой дом имеет вполне конкретное назначение - в нем можно жить. В кладке дома кирпичи определенным образом взаимосвязаны, в соответствии с конструкцией. Конечно, в конструкции дома кроме кирпичей имеется много других деталей (доски, балки, окна и пр.), все они нужным образом соединены и образуют единое целое - дом.

Вот другой пример: множество велосипедных деталей и собранный из них велосипед. Велосипед - это система. Его назначение - быть транспортным средством для человека.

Первое главное свойство системы - целесообразность. Это назначение системы, главная функция, которую она выполняет.

Структура системы

Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. Все части (элементы) системы находятся в определенных отношениях или связях друг с другом. Здесь мы выходим на следующее важнейшее понятие системологии - понятие структуры.

Структура - это порядок связей между элементами системы.

Можно еще сказать так: структура - это внутренняя организация системы. Из тех же самых кирпичей и других деталей кроме жилого дома можно построить гараж, забор, башню. Все эти сооружения строятся из одних и тех же элементов, но имеют разную конструкцию в соответствии с назначением сооружения. Применяя язык системологии, можно сказать, что они различаются структурой.

Кто из вас не увлекался детскими конструкторами: строительными, электрическими, радиотехническими и другими? Все детские конструкторы устроены по одному принципу: имеется множество типовых деталей, из которых можно собирать различные изделия. Эти изделия отличаются порядком соединения деталей, т. е. структурой.

Из всего сказанного можно сделать вывод: всякая система обладает определенным элементным составом и структурой. Свойства системы зависят и от состава, и от структуры. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

Второе главное свойство системы - целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы.

С зависимостью свойств различных систем от их структуры вам приходилось и еще предстоит встретиться в разных школьных дисциплинах. Например, известно, что графит и алмаз состоят из молекул одного и того же химического вещества - углерода. Но в алмазе молекулы углерода образуют кристаллическую структуру, а у графита структура совсем другая - слоистая. В результате алмаз - самое твердое в природе вещество, а графит мягкий, из него делают грифели для карандашей.

Рассмотрим пример общественной системы. Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др. Связи в таких системах - это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.

Вот простой пример. Имеются две строительные бригады, состоящие каждая из семи человек. В первой бригаде один бригадир, два его заместителя и по два рабочих в подчинении у каждого заместителя. Во второй бригаде - один бригадир и шестеро рабочих, которые подчиняются непосредственно бригадиру.

На рисунках схематически представлены структуры подчиненности в двух данных бригадах:

Таким образом, две эти бригады - пример двух производственных (социальных) систем с одинаковым составом (по 7 человек), но с разной структурой подчиненности.

Различие в структуре неизбежно отразится на эффективности работы бригад, на их производительности. При небольшом числе людей эффективнее оказывается вторая структура. Но если в бригаде 20 или 30 человек, то тогда одному бригадиру трудно управлять работой такого коллектива. В этом случае разумно ввести должности заместителей, т. е. использовать первую структуру подчиненности.

Системный эффект

Сущность системного эффекта : всякой системе свойственны новые качества, не присущие ее составным частям.

Это же свойство выражается фразой: целое больше суммы своих частей. Например, отдельные детали велосипеда: рама, руль, колеса, педали, сиденье не обладают способностью к езде. Но вот эти детали соединили определенным образом, создав систему под названием «велосипед», которая приобрела новое качество - способность к езде, т. е. возможность служить транспортным средством. То же самое можно показать на примере самолета: ни одна часть самолета в отдельности не обладает способностью летать; но собранный из них самолет (система) - летающее устройство. Еще пример: социальная система - строительная бригада. Один рабочий, владеющий одной специальностью (каменщик, сварщик, плотник, крановщик и пр.), не может построить многоэтажный дом, но вся бригада вместе справляется с этой работой.

О системах и подсистемах

В качестве еще одного примера системы рассмотрим объект - персональный компьютер (ПК). На рисунке приведена схема состава и структуры ПК.

Самое поверхностное описание ПК такое: это система, элементами которой являются системный блок, клавиатура, монитор, принтер, мышь. Можно ли назвать их простыми элементами? Конечно, нет. Каждая из этих частей - это тоже система, состоящая из множества взаимосвязанных элементов. Например, в состав системного блока входят: центральный процессор, оперативная память, накопители на жестких и гибких магнитных дисках, CD-ROM, контроллеры внешних устройств и пр. В свою очередь, каждое из этих устройств - сложная система. Например, центральный процессор состоит из арифметико-логического устройства, устройства управления, регистров. Так можно продолжать и дальше, все более углубляясь в подробности устройства компьютера.

подсистемой.

Из данного определения следует, что системный блок является подсистемой персонального компьютера, а процессор - подсистемой системного блока.

А можно ли сказать, что какая-то простейшая деталь компьютера, например гайка, системой не является? Все зависит от точки зрения. В устройстве компьютера гайка - простая деталь, поскольку на более мелкие части она не разбирается. Но с точки зрения строения вещества, из которого сделана гайка, это не так. Металл состоит из молекул, образующих кристаллическую структуру, молекулы - из атомов, атомы - из ядра и электронов. Чем глубже наука проникает в вещество, тем больше убеждается, что нет абсолютно простых объектов. Даже частицы атома, которые называют элементарными, например электроны, тоже оказались непростыми.

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях - как подсистема, имеющая свой состав и структуру.

О системах в науке и системном подходе

Основной смысл исследовательской работы ученого чаще всего заключается в поиске системы в предмете его исследования.

Задача всякой науки - найти системные закономерности в тех объектах и процессах, которые она изучает.

В XVI веке Николай Коперник описал устройство Солнечной системы. Земля и другие планеты вращаются вокруг Солнца; связаны они в единое целое силами притяжения.
Систематизация знаний очень важна для биологии. В XVIII веке шведский ученый Карл Линней написал книгу под названием «Системы природы». Он сделал первую удачную попытку классифицировать все известные виды животных и растений, а самое главное, показал взаимосвязь, т. е. зависимость одних видов от других. Вся живая природа предстала
как единая большая система. Но она, в свою очередь, состоит из системы растений, системы животных, т. е. подсистем. А среди животных есть птицы, звери, насекомые и т. д. Всё это тоже системы.

Русский ученый Владимир Иванович Вернадский в 20-х годах XX века создал учение о биосфере. Под биосферой он понимал систему, включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра (все это названо активной оболочкой Земли). Все подсистемы биосферы связаны между собой и зависят друг от друга. Вернадскому же принадлежит идея о зависимости состояния биосферы от космических процессов, иначе говоря, биосфера является подсистемой более крупных, космических систем.

Если человек хочет быть хорошим специалистом в своем деле, он обязательно должен обладать системным мышлением , к любой работе проявлять системный подход.

Сущность системного подхода : необходимо учитывать все существенные системные связи того объекта, с которым работаешь.

Очень «чувствительным» для всех нас примером необходимости системного подхода является работа врача. Взявшись лечить какую-то болезнь, какой-то орган, врач не должен забывать о взаимосвязи этого органа со всем организмом человека, чтобы не получилось, как в поговорке, «одно лечим, другое калечим». Человеческий организм - очень сложная система, поэтому от врача требуются большие знания и осторожность.

Еще один пример - экология. Слово «экология» происходит от греческих слов «экое» - «дом» и «логос» - «учение». Эта наука учит людей относиться к окружающей их природе как к собственному дому. Самой важной задачей экологии сегодня стала защита природы от разрушительных последствий человеческой деятельности (использования природных ресурсов, выбросов промышленных отходов и пр.). Со временем люди все больше вмешиваются в природные процессы. Некоторые вмешательства неопасны, но есть такие, которые могут привести к катастрофе. Экология пользуется понятием «экологическая система». Это человек с «плодами» его деятельности (города, транспорт, заводы и пр.) и естественная природа. В идеале в этой системе должно существовать динамическое равновесие, т. е. те разрушения, которые человек неизбежно производит в природе, должны успевать компенсироваться естественными природными процессами или самим человеком. Например, люди, машины, заводы сжигают кислород, а растения его выделяют. Для равновесия надо, чтобы выделялось
кислорода не меньше, чем его сжигается. И если равновесие будет нарушено, то в конце концов наступит катастрофа в масштабах Земли.

В XX веке экологическая катастрофа произошла с Аральским морем в Средней Азии. Люди бездумно забирали для орошения полей воду из питающих его рек Амударья и Сырдарья. Количество испаряющейся воды превысило приток, и море стало пересыхать. Сейчас оно практически погибло и жизнь на его бывших берегах ни для людей, ни для животных и растений стала невозможной. Вот вам пример отсутствия системного подхода. Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

Занимаясь изучением или преобразованием природы, надо видеть в ней систему и прилагать усилия для того, чтобы не нарушать ее равновесия.

IV . Закрепление знаний (5 мин.)

    стр. 32 №9, 10

V . Итог урока (2 мин.)

Оценивается работа в классе, называются оценки.

VI . Домашнее задание (3 мин.)

§5; стр. 32 №4-8.

Просмотр содержимого презентации
«Что такое система. 10 класс»



Системология - наука о системах.


Примеры

Кирпичный дом –

сложный объект

Кирпич –

простой объект


Пример

Автомобиль –

сложный объект

Автомобильные детали –

простые объекты


Главное понятие системологии – это понятие системы.

Система – это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое.

Всякая система имеет определенное назначение (функцию, цель)


Кирпичный дом.

Назначение – в нем можно жить

Куча кирпичей

Нет единства,

нет целесообразности


Примеры систем и их элементов

Велосипед –

сложный объект (система)

Велосипедные детали –

простые объекты

(элементы системы)


Первое главное свойство системы целесообразность (это назначение системы, главная функция, которую она выполняет).

Назначение велосипеда –

быть транспортным

средством для человека.

Назначение дома –

в нем можно жить.


Структура системы

Второе важнейшее понятие системологии – структура.

Структура – это порядок связей между элементами системы.

Структура – это внутренняя организация системы


Из кирпича можно построить гараж, забор, башню

Имеют разную конструкцию

в соответствии с назначением сооружения, т. е. различаются структурой


Пример

  • Детский конструктор
  • Из одних и тех же деталей можно собрать различные конструкции

Вывод:

  • всякая система обладает определенным элементным составом и структурой.
  • Свойства системы зависят и от состава, и от структуры.
  • Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

Второе главное свойство системы целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы


Зависимость свойств различных систем от их структуры

Молекула

углерода

Слоистая структура графита

Кристаллическая структура алмаза


Пример общественной системы

Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др.

Связи в таких системах - это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.


Структуры

подчиненности

в двух бригадах


Системный эффект

Сущность системного эффекта:

Это же свойство выражается фразой: целое больше суммы своих частей

Велосипед –

Устройство передвижения


Системный эффект

Сущность системного эффекта: всякой новой системе свойственны новые качества, не присущие её составным частям.

Самолет –

летающее устройство


Системы и подсистемы

Состав и структура персонального компьютера

Контролеры внешних

устройств

НМЖД

НГМД

Системный блок

Монитор

Информационная магистраль

Принтер

Центральный процессор

Оперативная память

Мышь

Клавиатура

Регистры


Системы и подсистемы

Систему, входящую в состав какой-то другой, более крупной системы, называют подсистемой.


Примеры систем и их элементов

В устройстве

компьютера

С точки зрения

строения вещества

Простая деталь

Подсистема


Вывод:

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях - как подсистема, имеющая свой состав и структуру.


О системах в науке и системном подходе

Основной смысл исследовательской работы

ученого чаще всего заключается в поиске

системы в предмете исследования.

Задача всякой науки – найти системные закономерности в тех объектах и процессах, которые она изучает.


Николай Коперник в XVI веке описал

устройство Солнечной системы


Карл Линней написал книгу «Система природы»

К. Линней сделал первую удачную попытку классифицировать все известные

виды животных и растений и показал зависимость одних видов от других.


Русский ученый В. И. Вернадский в 20-х годах XX века создал учение о биосфере.

Под биосферой он понимал систему , включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра.


Если человек хочет быть хорошим специалистом в своем деле, он обязательно должен обладать системным мышлением, к любой работе проявлять системный подход.

Сущность системного подхода: необходимо учитывать все существенные системные связи того объекта, с которым работаешь.


Пример необходимости системного подхода

  • Работа врача.
  • При лечении какого-нибудь органа, необходимо учитывать взаимосвязь этого органа со всем организмом.

Пример отсутствия системного подхода

  • Экологическая катастрофа с Аральским морем
  • Море стало пересыхать из-за разбора воды из Сырдарья и Амударья.

Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

Вывод:

Занимаясь изучением или преобразованием природы, надо видеть в ней систему и прилагать усилия для того, чтобы не нарушать её равновесия.



Домашнее задание

  • § 5;
  • вопросы 1 – 8 на стр. 32

Какие типы взаимодействия являются короткодействующими? Привести примеры систем, в которых действуют эти силы

Слабое взаимодействие менее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.

Сильное взаимодействие - самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, - проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10-15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.

Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия - это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь. При малом радиусе взаимодействие называют короткодействующим, при большом - дальнодействующим. Сильное и слабое взаимодействия являются короткодействующими. Их интенсивность быстро убывает при увеличении расстояния между частицами. Такие взаимодействия проявляются на небольшом расстоянии, недоступном для восприятия органами чувств. По этой причине эти взаимодействия были открыты позже других (лишь в XX веке) с помощью сложных экспериментальных установок. Для объяснения малого радиуса действия ядерных сил японский физик Х. Юкава в 1935 высказал гипотезу, согласно которой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом некоторой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется посредством обмена "частицами света" - фотонами. При этом предполагалось, что существует специфическое взаимодействие, приводящее к испусканию и поглощению промежуточной частицы - переносчика ядерных сил. Другими словами, вводился новый тип взаимодействий, который позже назвали сильные взаимодействия. Исходя из известного экспериментального радиуса действия ядерных сил, Юкава оценил массу частицы - переносчика с. в. Такая оценка основана на простых квантовомеханических соображениях. Согласно квантовой механике, время наблюдения системы?t и неопределённость в её энергии?E связаны соотношением: ?E?t Сильные взаимодействия h, где h -планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой m (т. е. энергия системы меняется согласно формуле относительности теории на величину?E = mc2, где с - скорость света), то это может происходить лишь на время?t Сильные взаимодействия h/mc2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка h/mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) h/mc, т. е. радиус действия сил, переносимых частицей с массой m, должен составлять величину h/mc. При радиусе действия Сильные взаимодействия10-13 см масса переносчика ядерных сил должна быть около 300 me (где me - масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, ?). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных?± и нейтрального?0-мезонов с массами соответственно 273 те и 264 me, взаимодействие передаётся большим числом др. мезонов с большими массами: ?, ?, ?, К,... и т. д. Кроме того, определенный вклад в С. в. (например, между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13 см, т. е. определяет характер С. в. на малых расстояниях, экспериментальное изучение различных реакций с адронами (таких, например, как реакции с передачей заряда - "перезарядкой": ?- + р > ?0 + n, К- + р > K0 + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами.