Организация пространства. Советы и идеи. Сад и участок

Как показать детям опыт космос. Опыты для детей: создаем космос в домашних условиях

В преддверии Дня космонавтики мы сделали подборку из пяти наиболее значимых экспериментов, проводимых когда-либо в космосе. В будущем результаты этих испытаний позволят преобразить процесс покорения неисследованных глубин космоса!

Учебник Б. А. Воронцова-Вельяминова, Е. К. Страута соответствует требованиям ФГОС и предназначен для изучения астрономии на базовом уровне. В нем сохранена классическая структура изложения учебного материала, большое внимание уделено современному состоянию науки. За последние десятилетия астрономия достигла огромных успехов. Сегодня она принадлежит к числу наиболее быстро развивающихся областей естествознания. Новые устоявшиеся данные по исследованию небесных тел с космических аппаратов и современных крупных наземных и космических телескопов нашли свое место в учебнике.


Использование технологий 3D-печати

Недавно на МКС провели испытания специального 3D-принтера, предназначенного для работы в условиях невесомости. С его помощью космонавты напечатали несколько инструментов, которые были отправлены назад на Землю для тщательной проверки их качества. Если будущие испытания пройдут успешно, то эта технология позволит экипажу станции самостоятельно производить нужные запчасти для ремонта МКС и избавит от необходимости брать с собой в полёт тяжелые детали - всё необходимое можно будет распечатать в космосе, имея на борту принтер и запас материалов.

Проверить свои знания о космосе вы сможете в онлайн-тренажёре .

Ловля частиц магнитным альфа-спектрометром

В современной физике существует множество нерешенных фундаментальных вопросов: например, что из себя представляет так называемая тёмная материя? Или почему во Вселенной наблюдается такая асимметрия между количеством вещества и антивещества? На эти и многие другие вопросы учёным поможет ответить специальный прибор, доставленный на МКС, - магнитный альфа-спектрометр. С его помощью учёные будут детектировать и изучать свойства всевозможных частиц, а его расположение в космосе обеспечит ещё большую точность данных, нежели на планете.

Почему наша Вселенная выглядит именно так? Что такое М-теория? Существуют ли исключения из законов природы, например, чудеса? Ответы на эти и многие другие вопросы дает легендарные ученый и популятор науки Стивен Хокинг. Кто спроектировал и придумал этот мир? И для чего это было сделано? Ответы на эти вечные вопросы дает выдающийся ученый современности Стивен Хокинг. Она будет интересна всем, кто хочет расширить свое понимание устройства Вселенной.


Космический огород

Некоторое время назад на МКС была доставлена специальная система для выращивания семян в космосе под названием Veggie. Используя её, космонавты смогут изучить процесс произрастания семян в условиях космоса. Растения получают все необходимые удобрения, а свет и тепло исходят от специальных ламп. Удача в испытании позволит в будущем организовать систему по выращиванию растений на кораблях и станциях в условиях длительных экспедиций. Сами космонавты признались, что этот эксперимент пришёлся им особенно по душе: возможность заботиться о растениях напоминала им о Земле.

Методическое пособие к переработанному под ФГОС учебнику «Астрономия. Базовый уровень. 11 класс» авторов Б. А. Воронцова-Вельяминова, Е. К. Страута призвано помочь учителю при подготовке к урокам, в организации деятельности учащихся на уроке и дома, в подготовке к ЕГЭ по физике, а также оказать поддержку в процессе вовлечения школьников в олимпиадную деятельность. К каждому уроку даны подробные методические указания, представлены задачи и практические задания. Также в пособии приведены варианты контрольных и самостоятельных работ и темы проектов.


Перед началом тематической недельки покажите ребенку фото или презентацию о планетах, Солнечной системе, о космосе, почитайте тематическую книжку.

  • Делаем ракету для космического путешествия. Ракету можно сделать из стульев, подушек, коробок, картона, бутылок, нарисовать, слепить из пластилина, выложить из счетных палочек, кубиков, конструктора.

Вот несколько примеров поделок «Ракета»:

  • Поиграйте в подготовку космонавта к полёту.

Начинается проверка скафандра. Удобно ли на голове сидит шлем? (Повороты, наклоны головы вправо, влево, вперед, назад, круговые вращения головы).

Космонавт может двигаться в космосе с помощью устройства, помещенного в ранце у него на спине. Проверяем, насколько крепко держится за спиной ранец. (Круговые движения, поднятие и опускание плеч).

Хорошо ли застегнуты многочисленные молнии и пряжки? (Повороты и наклоны корпуса вправо, влево, вперед, назад, круговые движения туловища, наклоны к стопам ног).

Плотно ли прилегают перчатки к рукам? (Вращательные движения кистями рук, вытянутыми вперед на уровне груди, переменные и одновременные махи руками, поднимание рук вверх перед собой с поочередным сгибанием и разгибанием кистей, через стороны опускать вниз, также поочередно сгибая и разгибая кисти рук).

Как работает радио, не барахлит? (Полуприседания, прыжки на двух ногах на месте).

Сапоги не жмут? (Ходьба по кругу на носках, пятках, внешних и внутренних стопах, с носка, боковой галоп вправо, влево, шаг гуськом).

В порядке ли «отопительная система» скафандра? Легко ли в нем дышится? (Вдох - руки вверх, выдох - руки вниз).

  • Запустите ракету.

Наденьте бумажную ракету на трубочку для коктейля и подуйте в трубочку так, чтобы ракета взлетела:



Надуйте шарик — ракету, приклейте к нему скотчем трубочку для коктейля. Протяните через комнату нитку, проденьте ее через трубочку. А теперь отпустите шарик. Воздух начнет из него выходить, и шарик полетит.

  • Познакомившись с планетами Солнечной системы, можно изобразить их разными способами — слепить из солёного теста или пластилина, нарисовать отпечатками разрезанной картошки или пробковой крышкой, выложить пуговицами или пластилином, сделать мобиль из картонных или фетровых фигурок.

Мы сделали вот такой рисунок: нарисовали звездное небо, разбрызгав белую краску по черной бумаге с помощью кисточки. Каждую планету отдельно, вырезали и приклеили их на звездное небо.

Луну можно нарисовать так. Вырежьте из картона круг, нарисуйте на нем восковыми мелками круги — кратеры, а затем закрасьте всю Луну акварелью.

Фонарик «Созвездия». Нарисуйте на черном картоне созвездия, сделайте отверстия в местах, где расположены звезды. Приклейте получившиеся карточки на бумажные формочки для кексов, наденьте на фонарик и перевяжите ниткой. А теперь зажгите фонарик в темной комнате и направьте на стену, чтобы получилась проекция созвездия.

Картотека опытов и экспериметнов

по теме «Космос»

Опыт № 1 «Солнечная система»

Цель : объяснить детям почему все планеты вращаются вокруг Солнца.

Оборудование : желтая палочка, нитки, 9 шариков.

Что же помогает Солнцу удерживать всю солнечную систему?

Солнцу помогает вечное движение. Если Солнышко не будет двигаться, вся ситема развалится и не будет действовать это вечное движение.

Опыт №2 «Солнце и Земля»

Цель: объяснить детям соотношения размеров Солнца и Земли.

Оборудование: большой мяч и бусина.

Представьте себе, если нашу солнечную систему уменьшить так, чтобы Солнце стало размером с этот мяч, Земля бы тогда со всеми городами и странами, горами, реками и океанами стала бы размером с эту бусину.

Опыт №3 «День и ночь»

Цель: оюъяснить детям, почему бывает день и ночь.

Оборудование: фонарик, глобус.

Спросите у детей, как они думают, что происходит там, где граница света и темноты размыта. (Ребята догадаются, что это утро либо вечер)

Опыт №4 «День и ночь «2»

Цель : объяснить детям, почему бывает день и ночь.

Оборудование: фонарик, глобус.

Содержание: создаем модель вращения Земли вокруг своей оси и вокруг Солнца. Для этого нам понадобится глобус и фонарик. Расскажите детям, что во Вселенной ничего не стоит на месте. Планеты и звезды движутся по своему, строго отведенному пути. Наша Земля вращается вокруг своей оси и при помощи глобуса это легко продемонстрировать. На той стороне земного шара, которая обращена к Солнцу (в нашем случае к фонарику) – день, на противоположной – ночь. Земная ось расположена не прямо, а наклонена под углом (это тоже хорошо видно на глобусе). Именно поэтому существует полярный день и полярная ночь. Пусть ребята сами убедятся, что как бы ни вращался глобус, один из полюсов все время будет освещен, а другой, напротив, затемнен. Расскажите детям про особенности полярного дня и ночи и о том, как люди живут за полярным кругом.

Опыт №5 «Кто придумал лето?»

Цель: объяснить детям, почему происходит смена времен года.

Оборудование: фонарик, глобус.

Из-за того, что Солнце по-разному освещает поверхность Земли, происходит смена времен года. Если в Северном полушарии лето, то в Южном, наоборот, зима.

Расскажите, что Земле необходим целый год для того, чтобы облететь вокруг Солнца. Покажите детям то место на глобусе, где вы живете. Можно даже наклеить туда бумажного человечка или фотографию ребенка. Подвигайте глобус и попробуйте вместе с детьми определить, какое время года будет в этой точке. И не забудьте обратить внимание ребят на то, что каждые пол-оборота Земли вокруг Солнца меняются местами полярные день и ночь.

Опыт №6: «Затмение Солнца»

Цель: объяснить детям, почему бывает затмение Солнца.

Оборудование: Фонарик, глобус.

Самое интересное, что не Солнце делается черного цвета, как многие думают. Наблюдая через закопченное стекло затмение, мы смотрим все на ту же Луну, которая как раз расположилась напротив Солнца.

Даа… Звучит непонятно… Нас выручат простые подручные средства. Возьмите крупный мяч (это, естественно, будет Луна). А Солнцем на этот раз станет наш фонарик. Весь опыт состоит в том, чтобы держать мяч напротив источника света – вот вам и черное Солнце… Все очень просто, оказывается.

Опыт №7 «Вращение Луны»

Цель : показать, что Луна вращается вокруг своей оси.

Оборудование: 2 листа бумаги, клейкая лента, фломастер.

Идите вокруг «Земли», продолжая оставаться лицом к кресту. Встаньте лицом к «Земле». Идите вокруг «Земли», оставаясь к ней лицом.

Итоги: пока вы ходили вокруг «Земли» и при этом оставались лицом к кресту, висящему на стене, различные части вашего тела оказывались повернутыми к «Земле». Когда вы ходили вокруг «Земли», оставаясь к ней лицом, то были постоянно обращены к ней только передней частью тела. ПОЧЕМУ? Вам приходилось постепенно поворачивать свое тело по мере вашего движения вокруг «Земли». И Луне тоже, поскольку она всегда обращена к Земле одной и той же стороной, приходится постепенно поворачиваться вокруг своей оси по мере движения по орбите вокруг Земли. Поскольку Луна совершает один оборот вокруг Земли за 28 дней, то и ее вращение вокруг своей оси занимает такое же время.

Опыт №8 «Голубое небо»

Цель: установить, почему Землю называют голубой планетой.

Оборудование: стакан, молоко, ложка, пипетка, фонарик.

Итоги : луч света проходит только через чистую воду, а вода, разбавленная молоком, имеет голубовато-серый оттенок.

ПОЧЕМУ? Волны, составляющие белый свет, имеют различную длину в зависимости от цвета. Частицы молока выделяют и рассеивают короткие голубые волны, из-за чего вода кажется голубоватой. Находящиеся в земной атмосфере молекулы азота и кислорода, как и частицы молока, достаточно малы, чтобы так же выделять из солнечного света голубые волны и рассеивать их по всей атмосфере. От этого с Земли небо кажется голубым, а Земля кажется голубой из космоса. Цвет воды в стакане бледный и не чисто голубой, потому что крупные частицы молока отражают и рассеивают не только голубой цвет. То же случается и с атмосферой, когда там скапливаются большие количества пыли или водяного пара. Чем чище и суще воздух, тем голубее небо, т.к. голубые волны рассеиваются больше всего.

Опыт №9 «Далеко-близко»

Цель: установить, как расстояние отСолнца влияет на температуру воздуха.

Оборудование: 2 термометра, настольная лампа, длинная линейка (метр)

Итоги: ближний термометр показывает более высокую температуру.

ПОЧЕМУ? Термометр, который находится ближе к лампе, получает больше энегрии и, следовательно, нагревается сильнее. Чем дальше распространяется свет от лампы, тем больше расходятся его лучи, и они уже не могут сильно нагреть дальний термометр. С планетами происходит то же самое. Меркурий – ближайшая к Солнцу планета – получает больше всего энергии. Более отдаленные от Солнца планеты получают меньше энергии и их атмосферы холоднее. На Меркурии гораздо жарче, чем на Плутоне, который находится очень далеко от Солнца. Что же касается температуры атмосферы планеты, то на нее оказывают влияние и другие факторы, такие как ее плотность и состав.

Опыт №10 «Далеко ли до Луны?»

Цель: узнать, как можно измерить расстояние до Луны.

Оборудование : 2 плоских зеркальца, клейкая лента, стол, листок из блокнота, фонарик.

Склейте зеркала лентой так, чтобы они открывались и закрывались как книга. Поставьте зеркала на стол.

Прикрепите листок бумаги на груди. Положите фонарик на стол так, чтобы свет падал на одно из зеркал под углом.

Найдите для второго зеркала такое положение, чтобы оно отражало свет на листок бумаги у вас на груди.

Итоги: на бумаге появляется кольцо света.

ПОЧЕМУ? Свет сначала был отражен одним зеркалом на другое, а затем уже на бумажный экран. Ретрорефлектор, оставленный на Луне, составлен из зеркал, похожих на те, которые мы использовали в этом эксперименте. Измерив время, за которое посланный с Земли лазерный луч отразился в ретрорефлекторе, установленном на Луне, и вернулся на Землю, ученые и вычислили расстояние от Земли до Луны.

Опыт № 11 «Далекое свечение»

Цель: установить, почему сияет кольцо Юпитера.

Оборудование: фонарик, тальк в пластмассовой упаковке с дырочками.

Итоги: луч света едва виден, пока в него не попадает порошок. Разлетевшиеся частицы талька начинают блестеть и световую дорожку можно рассмотреть.

ПОЧЕМУ? Свет нельзя увидеть, пока он не отразится от чего-нибудь и не попадет в ваши глаза. Частицы талька ведут себя так же, как и мелкие частицы, из которых состоит кольцо Юпитера: они отражают свет. Кольцо Юпитера находится в пятидесяти тысячах километров от облачного покрова планеты. Считается, что эти кольца состоят из вещества, попавшего туда с Ио, ближайшего из четырех спутников Юпитера. Ио – единственный известный нам спутник с действующими вулканами. Возможно,что кольцо Юпитера сформировалось из вулканического пепла.

Опыт № 12 «Дневные звезды»

Цель: показать, что звезды светят постоянно.

Оборудование: дырокол, картонка размером с открытку, белый конверт, фонарик.

Итоги: дырки в картоне не видны через конверт, когда вы светите фонариком на обращенную к вам сторону конверта, но становятся хорошо заметными, когда свет от фонаря направлен с другом стороны конверта, прямо на вас.

ПОЧЕМУ? В освещенной комнате свет проходит через дырочки независимо от того, где находится зажженный фонарик, но видно их становится только тогда, когда дырка, благодаря проходящему через нее свету, начинает выделяться на более темном фоне. Со звездами происходит то же самое. Днем они светят тоже, но небо становится настолько ярким из-за солнечного света, что свет звезд затмевается. Лучше всего смотреть на звезды в безлунные ночи и подальше от городских огней.

Опыт №13 «За горизонтом»

Цель: установить, почему Солнце можно видеть до того, как оно поднимается над горизонтом.

Оборудование: чистая литровая стеклянная банка с крышкой, стол, линейка, книги, пластилин.

Положите банку на стол в 30 см от края стола. Сложите перед банкой книги так, чтобы осталась видна только четверть банки. Слепите из пластилина шарик размером с грецкий орех. Положите шарик на стол, в 10 см от банки. Встаньте на колени перед книгами. Смотрите сквозь банку с водой, глядя поверх книг. Если пластилинового шарика не видно, подвиньте его.

Оставшись в таком положении, уберите банку из поля своего зрения.

Итоги: вы можете увидеть шарик только через банку с водой.

ПОЧЕМУ? Банка с водой позволяет вам видеть шарик, находящийся за стопкой книг. Все, на что вы смотрите, можно видеть только потому, что излучаемый этим предметом свет доходит до ваших глаз. Свет, отразившийся от пластилинового шарика, проходит сквозь банку с водой и преломляется в ней. Свет, исходящий от небесных тел, проходит через земную атмосферу (сотни километров воздуха, окружающего Землю) прежде чем дойти до нас. Атмосфера Земли преломляет этот свет так же, как банка с водой. Из-за преломления света Солнце можно видеть за несколько минут до того, как оно поднимается над горизонтом, а так же некоторое время после заката.

Опыт №14 «Звездные кольца»

Цель: установить, почему кажется, что звезды движутся по кругу.

Оборудование : ножницы, линейка, белый мелок, карандаш, клейкая лента, бумага черного цвета.

Проткните круг карандашом по центру и оставьте его там, закрепив снизу клейкой лентой. Зажав карандаш между ладоней, быстро крутите его.

Итоги: на вращающемся бумажном круге появляются светлые кольца.

ПОЧЕМУ? Наше зрение на некоторое время сохраняет изображение белых точек. Из-за вращения круга их отдельные изображения сливаются в светлые кольца. Подобное случается, когда астрономы фотографируют звезды, делая при этом многочасовые выдержки. Свет от звезд оставляет на фотопластинке длинный круговой след, как будто бы звезды двигались по кругу. На самом же деле, движется сама Земля, а звезды относительно нее неподвижны. Хотя на кажется, что движутся звезды, движется вотопластинка вместе с вращающейся вокруг своей оси Землей.

Опыт № 15 «Звездные часы»

Цель: узнать, почему звезды совершают круговое движение по ночному небу.

Оборудование: зонтик темного цвета, белок мелок.

Итоги: центр зонтика останется на одном месте, в то время, как звезды движутся вокруг.

ПОЧЕМУ? Звезды в созвездии Большой Медведицы соврешают кажущееся движение вокруг одной центральной звезды – Полярной – как стрелки на часах. На один оборот уходят одни сутки – 24 часа. Мы видим вращение звездного неба, но это нам только кажетя, поскольку на самом деле вращается наша Земля, а не звезды вокруг нее. Один оборот вокруг своей оси она совершает за 24 часа. Ось вращения Земли направлена к Полярной звезде и поэтому нам кажется, что звезды вращаются вокруг нее.


(Издательство «Манн, Иванов и Фербер ) предлагает родителям устроить для детей настоящий День Космонавтики с удивительными космическими экспериментами. Спорим, что все мальчишки и девчонки, принявшие в них участие, захотят стать космонавтами?

«Движение по орбите»

Космос похож на резиновую пленку. Разные объекты заставляют его изгибаться и деформироваться. Чем больше масса объекта, тем глубже впадина на пленке. Когда меньший объект (например, планета) движется мимо более крупного (например, звезды), он может попасть в углубление вокруг него – гравитационное поле. Меньший объект «катается» во впадине так же, как мяч катался в углублении простыни, благодаря гравитации.

Почему планеты и звезды не сталкиваются друг с другом, оказавшись во впадине? Если планеты двигаются достаточно быстро, то они не скатятся до самой нижней точки углубления, а будут кружить по краю вокруг звезды. Ученые называют этот фокус «движением по орбите».

Эксперимент “Космические впадины”

Знаешь ли ты, что в космосе тоже существуют ямы?

Проведи этот опыт, чтобы увидеть собственными глазами, как устроены космические впадины.

    Пусть друзья растянут простыню на весу. Помести в ее центр банку с вареньем. Провисает ли простыня под весом банки, образуя впадину?

    Теперь, не убирая банку, брось на простыню теннисный мяч. Что происходит? Наверняка мяч скатывается в углубление, поближе к банке. Подобным образом и действует гравитация!

КАК ТАКОЕ ВОЗМОЖНО?

Гравитация – это сила, которая притягивает объекты друг к другу. Чем больше масса объекта, тем сильнее сила притяжения. Массивные объекты – планеты, звезды – искривляют ткань Вселенной, подобно тому как банка варенья заставляет ткань прогнуться.

Чем тяжелее предмет в центре простыни, тем выше «сила притяжения» и тем быстрее мяч будет катиться в центр.

Например, галька в центре простыни не приведет мяч в заметное движение: она слишком легкая и почти не изгибает ткань. Так же и в космосе: тела с малой массой не влияют на движения других тел.

«Создание орбиты»

Благодаря силе гравитации, планеты движутся вокруг звезд по определенному пути, который называют орбитой. Создай подобие орбиты с помощью простыни и мяча.

На этот раз не бросай мяч на простыню, а пусти его кататься вокруг банки. Если мяч будет двигаться по кругу достаточно быстро, ты увидишь, как он несколько раз пройдет по одному и тому же пути, прежде чем замедлит ход и скатится к банке. Этот путь и есть орбита. Так как в космосе почти нет силы трения, объектам требуется очень много времени для снижения скорости настолько, чтобы сойти с орбиты.

«Черные дыры»

Черные дыры образуются, когда нейтронная звезда – та, что сжалась и стала маленькой и плотной (представь звезду с массой Солнца, сжатую до размеров города вроде Москвы), – продолжает сжиматься. Если тебя засосет в черную дыру, на ту часть тела, которая попала в нее первой, например ступни, гравитация будет воздействовать с большей силой, чем на ту часть, которая оказалась там последней, например голову. Тебя начнет растягивать!

Если же провалишься в черную дыру определенным образом, есть шанс, что ты не распадешься на частицы. Возможно, вылетишь с другой стороны и окажешься в другой вселенной!

Как связаны карандаш и космос?

А ты знал, что внутри каждого карандаша сидит нейтронная звезда? Чтобы выпустить ее, нужно нарисовать линию. Грифель карандаша – на самом деле разновидность углерода, называемого графитом. Графит состоит из сцепленных и выложенных стопкой атомов углерода. Если разделить эту стопку на слои толщиной в один атом, получишь вещество под названием «графен». В нейтронной звезде тоже есть углерод.

Представь себе: каждая пометка, которую ты делаешь карандашом, обладает звездными свойствами!

Интересные опыты для детей в домашних условиях позволят вам завлечь малыша к интересному занятию, а также стимулировать его познавательность и желание узнавать новое. Проводить разнообразные эксперименты можно с того момента, когда ребенок способен воспринимать информацию или хотя бы внимательно наблюдать за процессом. Оптимальным вариантом для простейших опытов можно назвать возраст в 2 года, после чего, вслед за ростом ребенка, можно усложнять эксперименты и привлекать свое чадо на помощь.

Современная наука для детей и родителей позволяет использовать подручные материалы для проведения различных экспериментов в домашних условиях. Дети в мире науки смогут лучше узнать все особенности происходящего вокруг, а также узнать для себя много полезного и интересного. Наука глазами детей обретет совершенно иной вид, а простые и забавные манипуляции, проводимые во время всех процедур, наверняка заинтересуют вашего ребенка, и он с радостью будет принимать участие.

Простая наука: опыты и эксперименты для детей

Опыты и эксперименты для детей 5-7 лет станут оптимальным решением для отличного времяпрепровождения с малышом. Начинаются школьные годы и прививать с помощью различных интересных «трюков» будет хорошим решением. Занимательная наука, проводимая в домашних условиях, открывает для ребенка совершенно иной мир, в котором, казалось бы, простые вещи, превращаются в нечто невообразимое.

Простые научные занятия для детей разного возраста, позволят вашему чаду лучше понять особенности разных веществ, их сочетаний и вызовут здоровый интерес к изучению нового, а пока мы предлагаем вашему вниманию 6 опытов, провести которые можно в домашних условиях.

Химические опыты для детей – важный момент, ведь можно не только открыть что-то новое для чада, но и объяснить особенности поведения с разными веществами и меры предосторожности, которые следует при этом соблюдать. Вашему вниманию представлены 3 химических опыта, провести которые можно в домашних условиях.

Неньютоновская жидкость

Достаточно простой эксперимент, для проведения которого потребуется всего лишь вода и крахмал. Для придания красочности можно использовать пищевой краситель любого цвета. Необходимо смешать воду с крахмалом в соотношении 1 к 1. В результате получается вещество, которое в спокойном виде сохраняет все характеристики воды, однако при ударе или попытке разорвать приобретает показатели, более свойственные твердому телу.


Превращаем молоко в корову

Интересный эксперимент с использованием молока и уксуса. Молоко следует немного подогреть в микроволновке или на плите, не доводя до кипения. После этого добавляем в емкость с молоком уксус и начинаем активно перемешивать. Через некоторое время начинают образовываться сгустки, состоящие из казеина – белка, имеющегося в коровьем молоке. При большом скоплении этих сгустков следует процедить жидкость, а собранные казеиновые сгустки собрать в один, из которого можно вылепить фигурку коровы или любого другого предмета. Просушив изделие, через несколько дней вы получаете прочную игрушку из природного материала с гипоаллергенными характеристиками.


«Зубная паста для слона»

Впечатляющий эксперимент, вызывающий у ребенка море позитивных эмоций и восторга. Для его проведения потребуется перекись водорода (6%), сухие дрожжи, жидкое мыло, пищевой краситель и немного воды. Для получения эффекта необходимо в смесь воды, мыла и перекиси добавить дрожжи. Вызванная этим экзотермическая реакция приведет к мгновенному расширению полученной смести, которая тут же фонтаном ударит из емкости. Для сохранения чистоты дома лучше проводите этот эксперимент на улице, ведь высота струи может достигать нескольких метров.


Однако не одной химией можно порадовать своих детишек. Существуют и эксперименты для детей в такой сфере наук как физика. Специально для вас мы подготовили 3 простейших из них.

Дырявый пакет

Для проведения эксперимента достаточно обычного пакета, немного воды и несколько остро заточенных карандашей. Необходимо набрать воды в пакет и плотно его завязать. После этого приходит момент истинного удивления ваших детей, когда полностью проткнув карандашом пакет, вода с него не потечет. Это связано с тем, что полиэтилен достаточно эластический материал и способный обволакивать карандаш, не давая воде вытекать.


Замороженный мыльный пузырь

Для реализации этой идеи потребуется обычный мыльный пузырь и подходящие погодные условия (желательно -15 градусов). Ребенок сможет наблюдать за тем, как быстро обычный пузырь сменяет свое агрегатное состояния, замерзая и приобретая совершенно иной вид.


Цветная башня

Все что потребуется от вас – вода, сахар и различные пищевые красители. Смешивая воду с сахаром в различных пропорциях, вы получаете различные по плотности смеси, что позволяет им не смешиваться между собой в одном сосуде, создавая таким образом башенку разных цветов.


Также вы можете узнать много интересного, посмотрев передачу простая наука, увлекательные опыты для детей, видео которых мы уже приготовили для вас.