Организация пространства. Советы и идеи. Сад и участок

Некоторые ферменты ускоряют протекание клеточных реакций. Ферменты, раздел «Химик

Ферменты. Кинетика ферментативных реакций

Биохимические реакции протекают только при участии ферментов, т. е. катализаторов, являющихся по своему составу и строению белками. Как из курса неорганической, так и из курса органической химии известны вещества, проявляющие каталитическое действие. Такие вещества, называемые катализаторами, есть во всех классах веществ – простые вещества (как металлы, так и неметаллы), кислоты, основания, оксиды, соли. Особенно широко применяются катализаторы в органической химии, так как для органических веществ характерна относительно низкая реакционная способность. Переходя на новую ступень химии – биохимию, мы встречаемся и с новым классом катализаторов – ферментами. Бесконечное разнообразие структуры белковых молекул оказывается предпосылкой биосинтеза специальных белков, пригодных в качестве катализаторов для всех осуществляющихся в природе биохимических процессов.

Ферментативному катализу присущи характерные особенности всех каталитических процессов, но обнаруживаются и принципиально важные отличия. К общим закономерностям относятся следующие:

    Ферменты увеличивают скорость реакции, но не смещают химическое равновесие;

    Ферменты ускоряют те реакции, которые могут самопроизвольно протекать в данных условиях;

    Несамопроизвольная реакция, сопряженная с самопроизвольной, также протекает при участии ферментов

    Скорость ферментативной реакции зависит от температуры и концентраций реактантов (субстрата и фермента).

К специфическим особенностям ферментативных реакций относятся следующие:

    Ферменты отличаются более высокой, чем обычные катализаторы, избирательностью к субстратам. Часто фермент ускоряет только одну биохимическую реакцию или достаточно узкую группу родственных реакций;

    Ферменты действуют стереоспецифически, ускоряя синтез только одного из возможных пространственных изомеров.

    Ферменты проявляют активность в ограниченном интервале температуры – ниже температуры денатурации данного белка;

    Активность фермента зависит от рН среды; у каждого фермента есть оптимальное значение рН, при котором активность максимальна.

    Многие ферменты действуют только при активировании коферментами – низкомолекулярными молекулами и ионами.

    Ферменты могут находиться в растворенном состоянии или быть встроенными в клеточные мембраны.

    Активность фермента может зависеть от концентрации продукта реакции.

Ферменты присутствуют в клетках в крайне малых концентрациях. Определение их в тканевых экстрактах или жидкостях – сложная задача. Поэтому разработаны особые подходы к определению каталитической активности ферментов. Измеряют скорость реакции, идущей под действием имеющегося фермента. Результат выражают в единицах активности фермента. Затем сравнивают относительные количества фермента в разных экстрактах. Единицы активности выражают в мкмоль (10 –6), нмоль (10 –9) или пмоль (10 –12) израсходованного субстрата или образовавшегося продукта в единицу времени (минуту). Международные единицы активности обозначаются U, nU и pU.

К ферментативному катализу приложимы основные положения теории скоростей химических реакций. Для протекания реакции необходимо сближение (столкновение) молекул фермента (встречаются обозначения F, Е, Enz) и субстрата (S) достаточное для образования связей. Для того, чтобы столкновение оказалось продуктивным (активным), молекулы должны иметь энергию, достаточную для преодоления энергетического барьера. Как известно, этот барьер называется энергией активации. На отдельных стадиях ферментативной реакции фермент выступает как обычный реактант, реагируя в молярном отношении 1:1. Ферментативные процессы часто представляют специальными схемами. Например, реакция переноса группы

A–B + D A–D + B

при участии фермента изображается следующим образом:

A–B Enz A–D

В качестве еще одного примера написания схемы ферментативной реакции возьмем реакцию изомеризации

S  изо -S

С участием фермента реакция записывается так:

S Enz изо -S

Стрелки создают картину циклического процесса, в который вовлекаются молекулы субстрата S и выходят молекулы продукта, часто обозначаемого как P.

Фермент представляет собой сложную молекулу, состоящую из сотен аминокислотных остатков и тысяч атомов. В связывании с субстратом может участвовать только небольшая группа атомов в такой молекуле. Эта группа называется активным центром. Э. Фишер предложил модель взаимодействия Enz–S как соответствие ключа и замка. Только при наличии такого соответствия может осуществиться превращение субстрата. Становится понятной избирательность действия фермента. Эта модель не потеряла своего значения, но позднее была предложена модель индуцированного соответствия (Кошланд), в которой учитывается гибкость молекулы фермента. При сближении молекул фермента и субстрата происходят конформационные изменения фермента, придающие окончательную конфигурацию реакционному центру. Молекулы, аналогичные субстрату, тоже могут вызывать конформационные изменения фермента, но при этом появляются различия в конформациях, при которых не возникает работающий активный центр.

Влияние температуры

В ограниченном интервале температур до начала денатурации белка скорость ферментативной реакции увеличивается, подчиняясь обычному закону, выражаемому уравнением Аррениуса. Для многих ферментативных реакций характерен температурный коэффициент скорости Q 10 , близкий к двум. Это соответствует энергии активации Е а = 55 кДж/моль при 37.

При приближении к температуре денатурации белка, прирост скорости замедляется, затем достигается максимальная скорость, и далее начинается резкое падение скорости, так как исчезают молекулы фермента, способные к катализу. Зависимость скорости каталитической реакции от температуры представлена на рисунке 1.

Зависимость от рН

При изменении рН смещаются равновесия переноса протонов, и соответственно заряды на молекулах фермента, а также нередко на молекулах субстрата. При низких значениях рН фермент протонируется и приобретает положительный заряд. При высоких – депротонируется, и приобретает отрицательный заряд. Это влияет на скорость ферментативных реакций. Если активность проявляет только одна из форм молекулы фермента с определенным значением заряда, то концентрация ее проходит через максимум при некотором значении рН М, и активность будет проявляться в пределах рН М 1. Получается зависимость активности от рН, представленная на рис. 2.

Для каждого фермента существует оптимальное значение рН, про котором проявляется наибольшая активность. При больших отклонениях рН от оптимального значения может происходить денатурация фермента.

Зависимость от концентраций

В математической форме зависимость скорости от концентрации представляется в виде кинетического уравнения. Скорость ферментативной реакции зависит как от концентрации субстрата, так и от концентрации фермента при прочих равных условиях (Т, рН). Необходимо учитывать, что фермент высокомолекулярное вещество, и его концентрация во много раз меньше, чем концентрация субстрата. Пусть в растворе содержатся субстрат с M r = 100 и фермент c M r = 100000. Массовые концентрации обоих реактантов 1 мг/л. Их молярные концентрации будут:

с(S) = 110 –5 моль/л, с(E) = 110 –8 моль/л

На 1000 молекул субстрата приходится одна молекула фермента. Реальное соотношение может быть значительно больше. Этим определяется форма кинетических уравнений в ферментативной кинетике.

Типичной особенностью кинетики ферментативных реакций оказалось, что скорость пропорциональна концентрации субстрата при его малой концентрации, и становится независимой от концентрации при большой концентрации. Эти результаты эксперимента графически изображаются кривой линией на рис. 3.

Для объяснения этой зависимости была предложена схема реакции в две стадии. В начале по обратимой реакции образуется фермент-субстратный комплекс S E, в котором происходит преобразование молекулы субстрата. На второй стадии связь изменившейся молекулы субстрата с ферментом разрывается, и появляется свободная молекула продукта P. Каждое превращение характеризуется своей константой скорости.

k 1 k 2

S + E S .... E  E + P

Для процесса с таким механизмом Л. Михаэлисом и Ментен было выведено уравнение зависимости скорости от концентрации S, получившее название уравнения Михаэлиса-Ментен.

Напишем кинетические уравнения для образования конечного продукта и фермент-субстратного комплекса:

v =
= k 2 c (SE) (1)

= k 1 c (S)c (E) k 1 c (SE) k 2 c (SE) (2)

Общая (начальная) концентрация фермента всегда много меньше концентрации субстрата, что отмечено выше. В ходе реакции концентрация свободного фермента c (E) уменьшается вследствие образования комплекса

c (E) = c o (E) c (SE) (3)

В стационарном состоянии концентрация комплекса остается постоянной:

= 0

Из этого условия получаем

k 1 c (S)c (E) k 1 c (SE) k 2 c (SE) = 0 (4)

Подставляем выражение (3) в (4)

k 1 c(S)[c o (E) c (SE)] k 1 c (SE) k 2 c (SE) = 0 (5)

В уравнении (5) раскрываем квадратные скобки и преобразуем его для нахождения концентрации фермент-субстратного комплекса SE:

Делением числителя и знаменателя на k 1 , получаем

(6)

Выражение, состоящее из констант, в знаменателе уравнения называют константой Михаэлиса K M :

(7)

Подставляем полученное выраженеие в ур. 1:

(8)

Полученное ур. 8 – одна из форм записи уравнения Михаэлиса-Ментен. Проанализируем это уравнение. Во многих ферментативных реакциях константа второй стадии k 2 значительно меньше констант образования k 1 и распада k –1 фермент-субстратного комплекса. В таких случаях константа Михаэлиса приблизительно равна константе равновесия распада комплекса на исходные молекулы:

При большой концентрации субстрата, когда c (S)K М , константой K М можно пренебречь, и тогда c (S) в ур. 8 сокращается; при этом скорость принимает максимальное значение:

v макс = k 2 c o (E) (9)

Максимальная скорость зависит от концентрации фермента и не зависит от концентрации субстрата. Это означает, что реакция идет по нулевому порядку относительно субстрата.

При малой концентрации субстрата, когда c (S) K М , реакция идет по первому порядку относительно субстрата:

v =

Таким образом, при увеличении концентрации субстрата порядок реакции изменяется от первого (область I на рис. 4) до нулевого (область III).

1/2v max

Уравнение Михаэлиса-Ментен можно записать с использованием максималоной скорости:

(10)

Эта форма уравнения удобна для представления результатов эксперимента, когда не известна концентрация фермента.

Если скорость реакции равна половине максимальной скорости, то из ур. 10 следует, что константа Михаэлиса равна соответствующей концентрации субстрата (рис. 4):

, откуда K M = c "(S)

Для более точного определения константы Михаэлиса графическим методом было предложено преобразование ур. 10 через обратные значения переменных. Меняем местами числитель и знаменатель в ур. 10:

или

Графическое представление уравнения Михаэлиса-Ментен в обратных координатах 1/v – 1/c (S) называют графиком Лайнуивера-Бёрка (рис. 5). Это график прямой линии, которая отсекает на оси 1/v отрезок, равный обратному значению максимальной скорости. Продолжение прямой линии в отрицательную область до пересечения с горизонтальной осью дает отрезок, абсолютное значение которого равно 1/K M . Таким образом, из графика определяются обратные значения параметров 1/v max и 1/K M , а затем и сами параметры.

Есть ферменты, действие которых не строго подчиняется ур. Михаэлиса-Ментен. При высокой концентрации субстрата максимальная скорость достигается, но при низкой концентрации график зависимости v – S принимает так называемый сигмоидный вид. Это означает, что сначала скорость увеличивается с ускорением (выгнутость кривой направлена вниз, см. рис. 6), а затем после точки перегиба скорость увеличивается с замедлением и приближается к максимальной скорости. Это объясняется кооперативным влиянием субстрата при наличии в ферменте нескольких центров связывания. Связывание одной молекулы S способствует связывания второй молекулы на другом центре.

Ферментами называются белковые вещества (см. Белки), ускоряющие жизненно важные химические реакции в клетках организмов. Являясь катализаторами, они образуют с исходными веществами неустойчивые промежуточные соединения: эти соединения, распадаясь, дают конечный продукт данной реакции и освобождают ферменты.

Действие некоторых ферментов легко наблюдать в опыте. Так, фермент каталаза значительно ускоряет разложение пероксида водорода Н2О2 на воду и кислород. Это жизненно важная реакция, так как пероксид водорода образуется в результате обмена веществ в клетке и сам по себе оказывает на клетку вредное действие. Каталаза содержится почти во всех клетках животных и растительных организмов.

Известно очень много ферментов, и каждый из них ускоряет только одну какую-либо реакцию или группы однотипных реакций. Эту особенность ферментов называют специфичностью или селективностью (избирательностью) действия. Направленность их действия позволяет организму быстро и точно выполнять сложную химическую работу по перестройке молекул пищевых веществ в нужные ему соединения.

Уже во рту во время пережевывания пищи под влиянием фермента амилазы сложные сахара, в частности крахмал, начинают разлагаться на менее сложные. Эта работа в дальнейшем будет продолжена в кишечнике ферментами карбогидразами. В желудке и кишечнике разложению с участием пепсина, трипсина, химотрипсина подвергаются белки пищи. Жиры разлагаются на глицерин и карбоновые кислоты (или их соли) под влиянием ферментов, называемых липазами. Все эти реакции разложения протекают по одному принципу: разрывается определенная химическая связь в молекуле белка, углевода или жира, и освободившиеся валентности используются для присоединения групп ОН- и иона Н+ из молекул воды. Происходит процесс гидролиза. Для молекулы белка эту реакцию можно представить так:

R 1 -CO-NH-R 2 - + НОН = -R 1 COOH + NH 2 -R 2 -

Известны ферменты, оказывающие иное действие на молекулы. Некоторые из них ускоряют окислительно-восстановительные реакции: они способствуют переносу электрона от одной молекулы (окисляемой) к другой (восстанавливаемой). Существуют ферменты, соединяющие молекулы друг с другом; ферменты, переносящие большие и сложные группы атомов от одной молекулы к другой, и т. д.

Располагая богатым набором ферментов-катализаторов, клетка разлагает молекулы пищевых белков, жиров и углеводов на небольшие фрагменты и из них заново строит белковые и иные молекулы, которые будут точно соответствовать потребностям данного организма. Вот почему великий русский физиолог И. П. Павлов назвал ферменты носителями жизни.

Активность большего числа ферментов определяется строением белковой молекулы. Определенное пространственное расположение остатков аминокислот, образующих цепеобразную молекулу белка (полипептидная цепь, см. Пептиды), создает условия для протекания катализируемой ферментом реакции. Длинная цепочка остатков аминокислот свернута в сложный клубок так, что аминокислоты, расположенные в цепи далеко друг от друга, могут оказаться соседями. Некоторые из возникших таким путем группировок остатков аминокислот проявляют каталитические свойства и образуют активный центр фермента.

Пепсин, химотрипсин, принимающие участие в пищеварении, могут служить примером ферментов, в которых активная группа является частью молекулы белка.

Другие ферменты для проявления активности нуждаются в веществах небелковой природы - так называемых кофакторах. Кофактором может быть ион металла (цинка, марганца, кальция и др.) или молекула органического соединения; в последнем случае ее часто называют коферментом. Иногда для действия фермента бывает необходимо присутствие как ионов металлов, так и коферментов. В отдельных случаях кофермент очень прочно соединен с белком; это наблюдается, например, у фермента каталазы, где кофермент представляет собой комплексное соединение железа (гем). В некоторых ферментах коферменты - это вещества, близкие по строению молекулы к витаминам. Витамины, таким образом, являются предшественниками коферментов. Так, из витамина В1 (тиамина) в клетках образуется тиамин-пирофосфат - кофермент важного фермента (его называют декарбоксилаза), превращающего пиро-виноградную кислоту в оксид углерода (IV) и ацетальдегид; из витамина В2 получаются коферменты флавиновых ферментов, осуществляющих в клетках перенос электронов - одну из стадий окисления пищевых веществ; из витамина В12 образуются коферменты, необходимые в процессе кроветворения, и т. д.

В последние годы широко используются так называемые иммобилизованные (неподвижные) ферменты. Для ускорения нужной реакции их закрепляют на поверхности инертного «носителя». В качестве его обычно используют силикагель - пористую белую массу, по составу - оксид кремния (IV) -или полимерные материалы. Через эту массу фильтруют исходные вещества. Фермент быстро и точно производит высокоспецифичную «химическую работу», в результате которой получаются продукты, почти не содержащие посторонних соединений.

Ферменты -белки, ускоряющие химические реакции. Все ферменты- это глобулярные белки. При реакции не расходуются. Обладают всеми свойствами белков.

Кроме ферментов каталитической активностью обладают некоторые РНК (рибозимы).

Отличаются:

1.Специфичность действия.

2.Высокая эффективность действия.

3.Способность к регулированию.

Есть 6 классов ферментов.

Классы ферментов:

1.Оксиредуктазы-катализируют ОВР с участием 2 субстратов (перенос электронов или атомов водорода с одного субстрата на другой).

Дегидрогеназы- катализируют реакции отщепления водорода (дегидрирование). В качестве акцептора электронов выступают NAD+, NADP+, FAD, FMN.

Оксидазы-акцептором электрона служит молекулярный кислород.

Оксигеназы (гидроксилазы)-атом кислорода из молекулы кислорода присоединяется к субстрату.

2.Трансферазы-катализируют пренос функциональных групп от одного соединения к другому. Подразделяются в зависимости от переносимых групп.

3.Гидролазы-катализируют реакции гидролиза (расщепление ковалентной связи с присоединением молекулы воды по месту разрыва).

4.Лиазы-отщепление от субстрата негидролитическим путем определенной группы (CO2, H2O, NH2, SH2).

5.Изомеразы- катализируют различные внутримолекулярные превращения. Если переносится группа внутри одной молекулы, то фермент называют мутазой.

6.Лигазы (синтетазы)- реакции присоединения друг к другу 2 молекул с образованием ковалентной связи. Процесс сопряжен с разрывом связи АТФ или другого макроэргического соединения. Если АТФ-синтетаза, если не АТФ-синтаза.

Активный центр фермента -совокупность участка связывания субстрата и каталитического участка. Состоит из аминокислотных остатков.

Участок связывания субстрата - участок в котором субстрат при помощи нековалентных связей связывается с ферментом, формируя фермент-субстратный комплекс.

Каталитический участок - участок в котором субстрат претерпевает химическое превращение в продукт.

Кофактор - небелковое соединение, переводящее фермент в активную форму (чаще всего это ионы металлов).

Кофермент - белковое соединение, переводящее фермент в активную форму (производное витаминов).

Кофакторы и коферменты либо формируют третичную структуры белка-фермента, что обеспечивает его специфичность к субстрату. Либо вовлекаются в реакцию в качестве дополнительного субстрата (в основном коферменты).

Механизм реакции фермента с субстратом:

1.Фермент связывается с субстратом в активном центре (у сложных белков в активном центре располагается кофактор).

2.В области активного центра происходит химическое превращение субстрата и, образуется продукт реакции.

3.Образовавшийся продукт реакции теряет комплементарность и отсоединяется от фермента.

Молекула каждого фермента имеет нужную для своего действия конформацию, только при определенных внешних условиях (РН, температура и т.д.).

Виды специфичности ферментов:

Субстратная специфичность:

1.Абсолютная- катализирует превращение только одного субстрата.

2.Групповая- катализирует однотипные превращения в нескольких структурно похожих субстратах.

3.Стереоспецифичность- при наличии у субстрата нескольких стереоизомеров, фермент проявляет абсолютную специфичность только к одному из них (D- сахара, L-аминокислоты, цис-транс-изомеры).

Каталитическая специфичность:

Катализ присоединенного субстрата по одному из возможных путей превращения. Одно и то же вещество может превращаться в разные продукты, по действием различных ферментов.

Каталитическая эффективность (число оборотов фермента)- количество молекул субстрата, превращенных в продукт с помощью одной молекулы фермента за 1 секунду.

Явление специфичности путей превращения- один и тот же субстрат может превращаться в разные вещества, под действием разных ферментов.

Скорость ферментативных реакций (V) измеряют по убыли субстрата (S) или приросту продукта (P) за единицу времени. Изменение скорости ферментативной реакции находится в прямой пропорциональной зависимости от изменения концентрации фермента при насыщающей концентрации субстрата.

1. изменяют свободную энергию реакции

2. ингибируют обратную реакцию

3. изменяют константу равновесия реакции

4. направляют реакцию по обходному пути с более низкими значениями энергии активации промежуточных реакций

102. Изменение конформации молекулы фермента может происходить:

2. только при изменении рН

103. Изменение степени ионизации функциональных групп фермента происходит при:

1. только при изменении температуры

2. только при изменении рН

3. только при изменении обоих условий

4. не происходит ни при каких изменениях

104. Гидролиз пептидных связей происходит при:

1. только при изменении температуры

2. только при изменении рН

3. при изменении обоих условий

4. не происходит ни при каких изменениях температуры и рН

105. Нарушение слабых связей в молекуле фермента происходит при:

2. только при изменении рН

3. при изменении обоих условий

4. не происходит ни при каких изменениях

106 Пепсин проявляет оптимальную активность при значении рН:

1. 1,5-2,5

107. Оптимум рН для работы большинства ферментов является:

1. рН < 4,0

3. 6,0 < pH < 8,0

108. Выберите из нижеследующих утверждений правильные:

1. все ферменты проявляют максимальную активность при рН=7

2. большинство ферментов проявляет максимальную активность при рН, близкой к нейтральному

3. пепсин проявляет максимальную активность при рН = 1,5-2,5

109. С помощью уравнения Михаэлиса-Ментен можно рассчитать:

4. изменение свободной энергии в ходе химической реакции

V = V max x [S] / K m + [S]

1. энергию активации химической реакции

2. скорость катализируемой ферментом реакции

3. энергетический барьер химической реакции

111. Выберите правильные ответы: Константа Михаэлиса (K m) – это:

2. Может иметь разное значение для изоферментов

3. Величина, при которой все молекулы фермента находятся в форме ES

4. Чем больше её величина, тем больше сродство фермента к субстрату

112. Выберите правильные ответы: Константа Михаэлиса (K m) – это:

1. Параметр кинетики ферментативной реакции

2. Величина, при которой все молекулы фермента находятся в форме ES

3. Чем больше её величина, тем больше сродство фермента к субстрату


4. Концентрация субстрата, при которой достигается половина максимальной реакции скорости реакции (V max)

113. Назовите особенности строения и функционирования аллостерических ферментов:

3. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

4. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

114. Назовите особенности строения и функционирования аллостерических ферментов:

1. как правило, являются олигомерными белками

2. как правило, не являются олигомерными белками

3. проявляют регуляторные свойства при диссоциации молекулы на протомеры

4. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства , кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе с греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живым организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно по 20 видов. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разделены на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а из остатков создают .

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненно важное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтобы снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталитическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно из названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание ;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • панкреатин – фермент животного происхождения, ускоряет переваривание и белков;
  • панкрелипаза – животный фермент, способствует усвоению

    Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

    Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

    Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить . В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

    Кроме того, что , пожалуй, самый известный источник , он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

    Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

    Экстремофилы и промышленность

    Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

    Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

    Извозчикова Нина Владиславовна

    Специальность: инфекционист, гастроэнтеролог, пульмонолог .

    Общий стаж: 35 лет .

    Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

    Научная степень: врач высшей категории, кандидат медицинских наук.